Looking deep into nature: A review of micro-computed tomography in biomimicry
Tài liệu tham khảo
Bar-Cohen, 2006
Bar-Cohen, 2012
J. Benyus, Biomimicry: Innovation inspired by nature, (1997). http://www.academia.edu/download/5239337/biomimicry-innovation-inspired-by-nature.pdf (accessed September 2, 2018).
Lurie-Luke, 2014, Product and technology innovation: what can biomimicry inspire?, Biotechnol. Adv., 32, 1494, 10.1016/j.biotechadv.2014.10.002
Chen, 2012, Biological materials: functional adaptations and bioinspired designs, Prog. Mater. Sci., 57, 1492, 10.1016/j.pmatsci.2012.03.001
Meyers, 2011, Biological materials: a materials science approach, J. Mech. Behav. Biomed. Mater., 4, 626, 10.1016/j.jmbbm.2010.08.005
Liu, 2018, On the materials science of Nature’s arms race, Adv. Mater., 30, 1
Naleway, 2015, Structural design elements in biological materials: application to bioinspiration, Adv. Mater., 27, 5455, 10.1002/adma.201502403
Liu, 2017, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Prog. Mater. Sci., 88, 467, 10.1016/j.pmatsci.2017.04.013
Chen, 2013, Bio-mimetic mechanisms of natural hierarchical materials: a review, J. Mech. Behav. Biomed. Mater., 19, 3, 10.1016/j.jmbbm.2012.10.012
Yang, 2018, Recent progress in biomimetic additive manufacturing technology: from materials to functional structures, Adv. Mater., 1706539
Frank, 2016, A protocol for bioinspired design: a ground sampler based on sea urchin jaws, J. Vis. Exp., 53554
du Plessis, 2018, Analyzing nature’s protective design: the glyptodont body armor, J. Mech. Behav. Biomed. Mater., 82, 10.1016/j.jmbbm.2018.03.037
Velasco-Hogan, 2018, Additive manufacturing as a method to design and optimize bioinspired structures, Adv. Mater., 10.1002/adma.201800940
Maire, 2014, Quantitative X-ray tomography, Int. Mater. Rev., 59, 1, 10.1179/1743280413Y.0000000023
du Plessis, 2017, Laboratory x-ray micro-computed tomography: a user guideline for biological samples, GigaScience, 6, 42, 10.1093/gigascience/gix027
De Chiffre, 2014, Industrial applications of computed tomography, CIRP Ann. – Manuf. Technol., 63, 655, 10.1016/j.cirp.2014.05.011
du Plessis, 2018, X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications, 3D print, Addit. Manuf., 5
Baird, 2017, X-ray micro computed-tomography, Curr. Biol., 27, R289, 10.1016/j.cub.2017.01.066
Broeckhoven, 2018, X-ray microtomography in herpetological research: a review, Amphibia-Reptilia., 39, 377, 10.1163/15685381-20181102
Mizutani, 2012, X-ray microtomography in biology, Micron., 43, 104, 10.1016/j.micron.2011.10.002
Schoeman, 2016, X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure, Trends Food Sci. Technol., 47, 10, 10.1016/j.tifs.2015.10.016
Feldkamp, 1984, Practical cone-beam algorithm, J. Opt. Soc. Am. A., 1, 612, 10.1364/JOSAA.1.000612
Kak, 2001, Principles of computerized tomographic imaging (society for industrial and applied mathematics), Soc. Ind. Appl. Math.
Matthews, 2016, Using X-ray computed tomography analysis tools to compare the skeletal element morphology of fossil and modern frog (Anura) species, Palaeontol. Electron., 19
du Plessis, 2016, Comparison of medical and industrial X-ray computed tomography for non-destructive testing, Case Stud. Nondestruct. Test. Eval., 10.1016/j.csndt.2016.07.001
Kalender, 2011
ASTM E1570-11, Standard Practice for Computed Tomographic (CT) Examination, ASTM E1570-11. (2011).
Broeckhoven, 2017, Beauty is more than skin deep: a non-invasive protocol for in vivo anatomical study using micro-CT, Methods Ecol. Evol., 8, 10.1111/2041-210X.12661
Speck, 2018, Biomechanics and Functional Morphology of Plants—Inspiration for Biomimetic Materials and Structures, 399
Masselter, 2013, From natural branchings to technical joints: branched plant stems as inspiration for biomimetic fibre-reinforced composites, Int. J. Des. Nat. Ecodynamics., 8, 144, 10.2495/DNE-V8-N2-144-153
Gludovatz, 2017, Multiscale structure and damage tolerance of coconut shells, J. Mech. Behav. Biomed. Mater., 76, 76, 10.1016/j.jmbbm.2017.05.024
Flores-Johnson, 2018, Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell, Sci. Rep., 8, 1, 10.1038/s41598-018-27282-8
Palombini, 2016, Araujo Mariath, Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography, Mater. Charact., 120, 357, 10.1016/j.matchar.2016.09.022
Dixon, 2018, 3D printed structures for modeling the Young’s modulus of bamboo parenchyma, Acta Biomater., 68, 90, 10.1016/j.actbio.2017.12.036
Kim, 2016, Novel water filtration of saline water in the outermost layer of mangrove roots, Sci. Rep., 6, 1
Gorb, 2008, Biological attachment devices: Exploring nature’s diversity for biomimetics, Philos. Trans. R, Soc. A Math. Phys. Eng. Sci., 366, 1557
Petersen, 2018, Competing with barnacle cement: wetting resistance of a re-entrant surface reduces underwater adhesion of barnacles Authors for correspondence, J. R. Soc. Interface, 10.1098/rsif.2018.0396
Mitchell, 2018, Correlative Imaging and Bio-inspiration: Multi-scale and Multi-modal Investigations of the Acorn Barnacle (Semibalanus balanoides), Microsc. Microanal., 24, 376, 10.1017/S1431927618002374
Müter, 2015, Microstructure and micromechanics of the heart urchin test from X-ray tomography, Acta Biomater., 23, 21, 10.1016/j.actbio.2015.05.007
Shang, 2016, Crustacean-inspired helicoidal laminates, Compos. Sci. Technol., 128, 222, 10.1016/j.compscitech.2016.04.007
North, 2017, Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis, APL Mater., 5, 14, 10.1063/1.4993202
Checa, 2015, The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor, Sci. Rep., 5, 11513, 10.1038/srep11513
Goyens, 2015, Built to fight: variable loading conditions and stress distribution in stag beetle jaws, Bioinspir. Biomim., 10, 10.1088/1748-3190/10/4/046006
Goyens, 2015, Cost of flight and the evolution of stag beetle weaponry, J. R. Soc. Interface., 12, 10.1098/rsif.2015.0222
Goyens, 2015, Mechanoreceptor distribution in stag beetle jaws corresponds to the material stress in fights, Arthropod Struct. Dev., 44, 201, 10.1016/j.asd.2015.03.003
van de Kamp, 2015, Beetle elytra as role models for lightweight building construction, Entomol. Heute., 27, 149
Rajabi, 2017, Dragonfly wing nodus: a one-way hinge contributing to the asymmetric wing deformation, Acta Biomater., 60, 330, 10.1016/j.actbio.2017.07.034
Jongerius, 2010, Structural analysis of a dragonfly wing, Exp. Mech., 50, 1323, 10.1007/s11340-010-9411-x
Van De Kamp, 2011, A biological screw in a beetle’s leg, Science (80-.), 333, 52, 10.1126/science.1204245
Taylor, 2016, The dual function of orchid bee ocelli as revealed by X-ray microtomography, Curr. Biol., 26, 1319, 10.1016/j.cub.2016.03.038
Yang, 2013, Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales, Acta Biomater., 9, 5876, 10.1016/j.actbio.2012.12.026
Lauder, 2011, Bioinspiration from fish for smart material design and function, Smart Mater. Struct., 20, 10.1088/0964-1726/20/9/094014
Song, 2010, Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus), J. Struct. Biol., 171, 318, 10.1016/j.jsb.2010.04.009
Yang, 2015, The armored carapace of the boxfish, Acta Biomater., 23, 1, 10.1016/j.actbio.2015.05.024
Porter, 2013, Highly deformable bones: Unusual deformation mechanisms of seahorse armor, Acta Biomater., 9, 6763, 10.1016/j.actbio.2013.02.045
Martini, 2017, A comparative study of bio-inspired protective scales using 3D printing and mechanical testing, Acta Biomater., 55, 360, 10.1016/j.actbio.2017.03.025
Porter, 2017, 3D-printing and mechanics of bio-inspired articulated and multi-material structures, J. Mech. Behav. Biomed. Mater., 73, 114, 10.1016/j.jmbbm.2016.12.016
Wen, 2014, Biomimetic shark skin: design, fabrication and hydrodynamic function, J. Exp. Biol., 217, 1656, 10.1242/jeb.097097
Wen, 2015, Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing, Bioinspiration Biomimetics, 10, 66010, 10.1088/1748-3190/10/6/066010
Huang, 2017, Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea), Acta Biomater., 51, 393, 10.1016/j.actbio.2017.01.026
Broeckhoven, 2017, Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint, Biol. Lett., 10.1098/rsbl.2017.0293
Du Plessis, 2018, Snake fangs: 3D morphological and mechanical analysis by microCT, simulation, and physical compression testing, GigaScience, 7, 1, 10.1093/gigascience/gix126
Chen, 2015, Leatherback sea turtle shell: a tough and flexible biological design, Acta Biomater., 28, 2, 10.1016/j.actbio.2015.09.023
Achrai, 2013, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield, Acta Biomater., 9, 5890, 10.1016/j.actbio.2012.12.023
Broeckhoven, 2017, Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards, J. Mech. Behav. Biomed. Mater., 10.1016/j.jmbbm.2017.06.007
Broeckhoven, 2017, Beauty is more than skin deep: a non-invasive protocol for in vivo anatomical study using micro-CT, Methods Ecol. Evol., 10.1111/2041-210X.12661
Novitskaya, 2017, Reinforcements in avian wing bones: experiments, analysis, and modeling, J. Mech. Behav. Biomed. Mater., 76, 85, 10.1016/j.jmbbm.2017.07.020
Sullivan, 2017, Extreme lightweight structures: avian feathers and bones, Mater. Today., 20, 377, 10.1016/j.mattod.2017.02.004
Seki, 2012, Structure and micro-computed tomography-based finite element modeling of Toucan beak, J. Mech. Behav. Biomed. Mater., 9, 1, 10.1016/j.jmbbm.2011.08.003
Seki, 2010, Toucan and hornbill beaks: a comparative study, Acta Biomater., 6, 331, 10.1016/j.actbio.2009.08.026
Yoon, 2011, A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems, Bioinspiration Biomimetics, 6, 10.1088/1748-3182/6/1/016003
Jung, 2018, A comparative analysis of the avian skull: Woodpeckers and chickens, J. Mech. Behav. Biomed. Mater., 84, 273, 10.1016/j.jmbbm.2018.05.001
Jung, 2016, Structural analysis of the tongue and hyoid apparatus in a woodpecker, Acta Biomater., 37, 1, 10.1016/j.actbio.2016.03.030
Wang, 2017, A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates, J. Mech. Behav. Biomed. Mater., 76, 4, 10.1016/j.jmbbm.2017.05.015
McKittrick, 2010, Energy absorbent natural materials and bioinspired design strategies: a review, Mater. Sci. Eng. C., 30, 331, 10.1016/j.msec.2010.01.011
Krauss, 2009, Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle, Adv. Mater., 21, 407, 10.1002/adma.200801256
González-Albuixech, 2018, Migué Lez, Numerical analysis for design of bioinspired ceramic modular armors for ballistic protections, Int. J. Damage Mech.
Chen, 2011, Armadillo armor: Mechanical testing and micro-structural evaluation, J. Mech. Behav. Biomed. Mater., 4, 713, 10.1016/j.jmbbm.2010.12.013
Chon, 2017, Lamellae spatial distribution modulates fracture behavior and toughness of African pangolin scales, J. Mech. Behav. Biomed. Mater., 76, 30, 10.1016/j.jmbbm.2017.06.009
Liu, 2016, Enhanced protective role in materials with gradient structural orientations: lessons from Nature, Acta Biomater., 44, 31, 10.1016/j.actbio.2016.08.005
Kennedy, 2017, Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments, J. Mech. Behav. Biomed. Mater., 75, 413, 10.1016/j.jmbbm.2017.08.009
W. Kyung Cho, J.A. Ankrum, D. Guo, S.A. Chester, S. Yun Yang, A. Kashyap, G.A. Campbell, R.J. Wood, R.K. Rijal, R. Karnik, R. Langer, J.M. Karp, Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal, (n.d.). doi:10.1073/pnas.1216441109.
Emlen, 2008, The evolution of animal weapons, Annu. Rev. Ecol. Evol. Syst., 39, 387, 10.1146/annurev.ecolsys.39.110707.173502
Huang, 2017, Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn, Acta Biomater., 64, 1, 10.1016/j.actbio.2017.09.043
Drake, 2016, Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull, Acta Biomater. 44, 41, 10.1016/j.actbio.2016.08.019
Rinehart, 2017, Characterization of seal whisker morphology: Implications for whisker-inspired flow control applications, Bioinspiration Biomimetics, 12, 10.1088/1748-3190/aa8885
Wang, 2016, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials, 83, 127, 10.1016/j.biomaterials.2016.01.012
Tan, 2017, Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility, Mater. Sci. Eng. C., 76, 1328, 10.1016/j.msec.2017.02.094
Zhang, 2017, Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review, Materials (Basel)., 10, 50, 10.3390/ma10010050
du Plessis, 2018, Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing, Virtual Phys. Prototyp., 1
D. Qu, C.Z. Mosher, M.K. Boushell, H.H. Lu, Engineering Complex Orthopaedic Tissues Via Strategic Biomimicry, (n.d.). doi:10.1007/s10439-014-1190-6.
du Plessis, 2016, The CT scanner facility at stellenbosch university: an open access x-ray computed tomography laboratory, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms., 384, 42, 10.1016/j.nimb.2016.08.005
C. Foster, The Sea Change project, (n.d.). http://www.seachangeproject.com (accessed September 14, 2018).
Hildebrand, 1997, A new method for the model-independent assessment of thickness in three-dimensional images, J. Microsc., 185, 67, 10.1046/j.1365-2818.1997.1340694.x
du Plessis, 2018, Standard method for microCT-based additive manufacturing quality control 3: Surface roughness, MethodsX., 5, 1111, 10.1016/j.mex.2018.09.004
Jaecques, 2004, Vander Sloten, Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone, Biomaterials, 25, 1683, 10.1016/S0142-9612(03)00516-7
Mostaghimi, 2013, Computations of Absolute Permeability on Micro-CT Images, Math. Geosci., 45, 103, 10.1007/s11004-012-9431-4
Metscher, 2009, Micro CT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues, BMC Physiol., 9, 10.1186/1472-6793-9-11
Gignac, 2016, Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues, J. Anat., 228, 889, 10.1111/joa.12449
Pauwels, 2013, An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging, J. Microsc., 250, 21, 10.1111/jmi.12013
H. Schmidbaur, K. Keklikoglou, B.D. Metscher, S. Faulwetter, Exploring methods to remove iodine and phosphotungstic acid stains from zoological specimens, in: Bruker MicroCT User Mtg Abstr. 21, 2015: pp. 1–8. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/PreclinicalImaging/microCT/2015/uCT2015-21.pdf (accessed November 19, 2018).
Vickerton, 2013, Concentration-dependent specimen shrinkage in iodine-enhanced microCT, J. Anat., 223, 185, 10.1111/joa.12068
Buytaert, 2014, Volume Shrinkage of Bone, Brain and Muscle Tissue in Sample Preparation for Micro-CT and Light Sheet Fluorescence Microscopy (LSFM), Microsc. Microanal., 20, 1208, 10.1017/S1431927614001329
A. du Plessis, C. Broeckhoven, Metal Body Armour: Biomimetic Engineering of Lattice Structures †, (2018). doi:10.20944/PREPRINTS201810.0535.V1.
Orme, 2017, Designing for additive manufacturing: lightweighting through topology optimization enables lunar spacecraft, J. Mech. Des., 139, 10.1115/1.4037304
Gao, 2015, The status, challenges, and future of additive manufacturing in engineering, Comput. Des., 69, 65
C.H. Hands, A. du Plessis, N. Minnaar, B.A. Blakey-Milner, E. Burger, Can Additive Manufacturing Help Win the Race?, (2018). doi:10.20944/PREPRINTS201811.0040.V1.
Vincent, 2006, Biomimetics: its practice and theory, J. R. Soc. Interface., 3, 471, 10.1098/rsif.2006.0127
Kamps, 2017, Systematic biomimetic part design for additive manufacturing, Procedia CIRP., 65, 259, 10.1016/j.procir.2017.04.054
Snell-Rood, 2016, Interdisciplinarity: Bring biologists into biomimetics, Nature, 529, 277, 10.1038/529277a
Mcnulty, 2017, A framework for the design of biomimetic cellular materials for additive manufacturing, solid free, Fabr. Symp., 2188