Intuitionistic fuzzy-based model for failure detection

SpringerPlus - Tập 5 - Trang 1-15 - 2016
Daniel O. Aikhuele1, Faiz B. M. Turan1
1Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Malaysia

Tóm tắt

In identifying to-be-improved product component(s), the customer/user requirements which are mainly considered, and achieved through customer surveys using the quality function deployment (QFD) tool, often fail to guarantee or cover aspects of the product reliability. Even when they do, there are always many misunderstandings. To improve the product reliability and quality during product redesigning phase and to create that novel product(s) for the customers, the failure information of the existing product, and its component(s) should ordinarily be analyzed and converted to appropriate design knowledge for the design engineer. In this paper, a new intuitionistic fuzzy multi-criteria decision-making method has been proposed. The new approach which is based on an intuitionistic fuzzy TOPSIS model uses an exponential-related function for the computation of the separation measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and intuitionistic fuzzy negative ideal solution (IFNIS) of alternatives. The proposed method has been applied to two practical case studies, and the result from the different cases has been compared with some similar computational approaches in the literature.

Tài liệu tham khảo

Adhikary DD, Bose GK, Bose D, Mitra S (2014) Multi criteria FMECA for coal-fired thermal power plants using COPRAS-G. Int J Qual Reliab Manag 31(5):601–614. doi:10.1108/IJQRM-04-2013-0068 Aikhuele DO, Turan FB (2016) An improved methodology for multi-criteria evaluations in the shipping industry. Brodogradnja/Shipbuilding 67(3):59–72 Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96. doi:10.1016/S0165-0114(86)80034-3 Balin A, Demirel H, Alarçin F (2014) A hierarchical structure for ship diesel engine trouble-shooting problem using fuzzy Ahp and fuzzy Vikor hybrid methods. Brodogradnja 66(1):54–65 Bowles JB, Pelaez CE (1995) Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab Eng Syst Saf 50(2):203–213. doi:10.1016/0951-8320(95)00068-D Braglia M, Frosolini M, Montanari R (2003) Fuzzy TOPSIS approach for failure mode, effects and criticality analysis. Qual Reliab Eng Int 19(5):425–443 Bulgurcu BK (2012) Application of TOPSIS technique for financial performance evaluation of technology firms in Istanbul stock exchange market. Procedia Soc Behav Sci 62:1033–1040. doi:10.1016/j.sbspro.2012.09.176 Chang KH, Wen TC (2010) A novel efficient approach for DFMEA combining 2-tuple and the OWA operator. Expert Syst Appl 37(3):2362–2370. doi:10.1016/j.eswa.2009.07.026 Chang DS, Chung JH, Sun KL, Yang FC (2012) A novel approach for evaluating the risk of health care failure modes. J Med Syst 36(6):3967–3974. doi:10.1007/s10916-012-9868-5 Chen SM, Tan JM (1994) Handling multicriteria fuzzy decision-making problems based on Vague Set Theory. Fuzzy Sets Syst 67(2):163–172 Chou SY, Vincent FY, Anindhita D, Luu QD (2012) A fuzzy TOPSIS approach for medical provider selection and evaluation. Int Conf Fuzzy Theory Appl iFUZZY 10:322–326. doi:10.1109/iFUZZY.2012.6409724 Datta S, Samantra C, Mahapatra SS, Mondal G, Chakraborty PS, Majumdar G (2013) Selection of internet assessment vendor using TOPSIS method in fuzzy environment. Int J Bus Perform Supply Chain Model 5(1):1–27. doi:10.1504/IJBPSCM.2013.051645 Dehghani Soufi M, Ghobadian B, Najafi G, Sabzimaleki MR, Yusaf T (2015) TOPSIS multi-criteria decision modeling approach for biolubricant selection for two-stroke petrol engines. Energies 8(12):13960–13970. doi:10.3390/en81212408 Despic O, Simonovic SP (2000) Aggregation operators for soft decision making in water resources. Fuzzy Sets Syst 115(1):11–33. doi:10.1016/S0165-0114(99)00030-5 Dietrich DL (2006) Reliability from design inception to product retirement. In: IEEE proceedings of annual reliability and maintainability symposium, Newport Beach, California, USA, January 23–26, 2006, Tutorial page 1—Tutorial page 33. d:\Doktorautza\artikuluak\bai\RAMS2006\2006rm Lessons Learned for Effective FMEAs.pdf Geum Y, Yangrae C, Yongtae P (2011) A systematic approach for diagnosing service failure: service-specific FMEA and grey relational analysis approach. Math Comput Model 54(11–12):3126–3142. doi:10.1016/j.mcm.2011.07.042 Ghazanfari M, Rouhani S, Jafari M (2014) A fuzzy TOPSIS model to evaluate the business intelligence competencies of port community systems. Polish Marit Res 21(2):86–96. doi:10.2478/pomr-2014-0023 He YH, Wang LB, He ZZ, Xie M (2015) A fuzzy TOPSIS and rough set based approach for mechanism analysis of product infant failure. Eng Appl Artif Intell 47:1–13. doi:10.1016/j.engappai.2015.06.002 Helvacioglu S, Ozen E (2014) Fuzzy based failure modes and effect analysis for Yacht system design. Ocean Eng 79:131–141. doi:10.1016/j.oceaneng.2013.12.015 Hong DH, Choi CH (2000) Multi-criteria fuzzy decision making problems based on Vague Set Theory. Fuzzy Sets Syst 114(1):103–113. doi:10.1016/S0165-0114(98)00271-1 Hu-Chen L, Liu L, Lin Q-L (2013) Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology. IEEE Trans Reliab 62(1):23–36. doi:10.1109/TR.2013.2241251 Hwang CL, Yoon K (1981) Multiple attribute decision making methods and applications. Springer, Berlin Jadidi O, Ts H, Firouzi F (2008) TOPSIS and fuzzy multi-objective model integration for supplier selection problem. J Achiev Mater Manuf Eng 31 (2): 762–69. http://157.158.19.167/papers_vol31_2/31288.pdf Keizer JA, Jan-Peter V, Johannes H (2005) Risks in new product development. Eindhoven University of Technology, Department of Technology Management, Netherlands Li X, Zhao W, Zheng Y, Wang R, Wang C (2014) Innovative product design based on comprehensive customer requirements of different cognitive levels. Sci World J 2014:1–11. doi:10.1155/2014/627093 Liu HC, Liu L, Bian QH, Lin QL, Dong N, Xu PC (2011) Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst Appl 38(4):4403–4415. doi:10.1016/j.eswa.2010.09.110 Liu C, Ramirez-Serrano A, Yin Guofu (2012) An optimum design selection approach for product customization development. J Intell Manuf 23(4):1433–1443. doi:10.1007/s10845-010-0473-5 Liu HC, Liu L, Lin QL (2013) Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology. IEEE Trans Reliab 62(1):23–36. doi:10.1109/TR.2013.2241251 Liu HC, Fan XJ, Li P, Chen YZ (2014) Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Eng Appl Artif Intell 34:168–177. doi:10.1016/j.engappai.2014.04.011 Liu HC, Liu L, Li P (2015) Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Comput 19:1085–1098. doi:10.1007/s00500-014-1321-x Martínez RS (2015) System theoretic process analysis of electric power steering for automotive applications Mohammadi A, Tavakolan M (2013) “Construction project risk assessment using combined fuzzy and FMEA. IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, 232–37. doi:10.1109/IFSA-NAFIPS.2013.6608405 Netto TA, Honorato HJ, Qassim RY (2013) Prioritization of failure risk in subsea flexible pipes via data envelopment analysis. Mar Struct 34:105–116. doi:10.1016/j.marstruc.2013.08.001 Pakpour S, Olishevska SV, Prasher SO, Milani AS, Chénier MR (2013) DNA extraction method selection for agricultural soil using TOPSIS multiple criteria decision-making model. Am J Mol Biol Published (October): 215–28 Pérez-Domínguez L, Alvarado-Iniesta A, Rodríguez-Borbón I, Vergara-Villegas O (2015) Intuitionistic fuzzy MOORA for supplier selection. Dyna 82(191):34–41. doi:10.15446/dyna.v82n191.51143 Risdiyono R, Koomsap P (2013) Design by customer: concept and applications. J Intell Manuf 24(2):295–311. doi:10.1007/s10845-011-0587-4 Romli F, Harmin MY (2015) Use of Monte Carlo method to estimate subsystem redesign risk for complex products: aircraft redesign case study. Aircr Eng Aerosp Technol 87(6):563–570. doi:10.1108/AEAT-02-2015-0044 Safari H, Faraji Z, Majidian S (2016) Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. J Intell Manuf 27:475–486. doi:10.1007/s10845-014-0880-0 Sayareh J, Ahouei VR (2013) Failure mode and effects analysis (FMEA) for reducing the delays of cargo handling operations in marine bulk terminals. J Marit Res 10(2):43–50 Shieh MD, Yan W, Chen CH (2008) Soliciting customer requirements for product redesign based on picture sorts and ART2 neural network. Expert Syst Appl 34(1):194–204. doi:10.1016/j.eswa.2006.08.036 Shin JH, Kiritsis D, Xirouchakis P (2015) Design modification supporting method based on product usage data in closed-loop PLM. Int J Comput Integr Manuf 28(6):551–568. doi:10.1080/0951192X.2014.900866 Smith S, Smith G, Shen YT (2012) Redesign for product innovation. Des Stud 33(2):160–184. doi:10.1016/j.destud.2011.08.003 Song W, Ming X, Wu Z, Zhu B (2013) Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int J Comput Integr Manuf 26(12):1172–1186. doi:10.1080/0951192X.2013.785027 Tay KM, Jong CH, Lim CP (2015) A clustering-based failure mode and effect analysis model and its application to the edible bird nest industry. Neural Comput Appl 26(3):551–560. doi:10.1007/s00521-014-1647-4 Vinodh S, Aravindraj S, Sathya Narayanan R, Yogeshwaran N (2012) Fuzzy assessment of FMEA for rotary switches: a case study. TQM J 24:461–475. doi:10.1108/17542731211261601 Wu J (2015) Consistency in MCGDM problems with intuitionistic fuzzy preference relations based on an exponential score function. Group Decis Negot 25(2):399–420. doi:10.1007/s10726-015-9447-5 Xie L (2013) A new method for failure modes and effects analysis and its application in a hydrokinetic turbine system. ProQuest Dissertations and Theses 89. https://vpn.utm.my/docview/1449163083?accountid=41678 Xu Z (2007a) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15(6):1179–1187 Xu Z (2007b) Intuitionistic preference relations and their application in group decision making. Inform Sci 177(11):2363–2379. doi:10.1016/j.ins.2006.12.019 Xu Z, Liao H (2015) A survey of approaches to decision making with intuitionistic fuzzy preference relations. Knowl-Based Syst 80:131–142. doi:10.1016/j.knosys.2014.12.034 Xu Z, Senior Member, Liao H (2013) Intuitionistic fuzzy analytic hierarchy process. IEEE Trans Fuzzy Syst 22(4):1. doi:10.1109/TFUZZ.2013.2272585 Yang C, Wu Q (2008) Decision model for product design based on fuzzy TOPSIS method. Int Symp Comput Intell Design 2008:342–345. doi:10.1109/ISCID.2008.220 Yang Q, Yu S, Sekhari A (2011) A modular eco-design method for life cycle engineering based on redesign risk control. Int J Adv Manuf Technol 56(9–12):1215–1233. doi:10.1007/s00170-011-3246-1 Ye J (2010a) Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur J Oper Res 205(1):202–204. doi:10.1016/j.ejor.2010.01.019 Ye J (2010b) Two effective measures of intuitionistic fuzzy entropy. Computing (Vienna/New York) 1–2:55–62. doi:10.1007/s00607-009-0075-2 Zhao H, You JX, Liu HC (2016) Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft Comput. Springer Berlin Heidelberg. doi:10.1007/s00500-016-2118-x Zhu X, Wang F, Liang C, Li J, Sun X (2012) Quality credit evaluation based on TOPSIS: evidence from air-conditioning market in China. Procedia Comput Sci 9(10):1256–1262. doi:10.1016/j.procs.2012.04.137