Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery

Electrochimica Acta - Tập 136 - Trang 274-285 - 2014
Atetegeb Meazah Haregewoin1,2, Ermias Girma Leggesse1,3, Jyh-Chiang Jiang1, Fu-Ming Wang4, Bing-Joe Hwang1, Shawn D. Lin1
1Department of Chemical Engineering, National Taiwan University of Science and Technology,Taipei 106, Taiwan, R.O.C.
2Department of Chemistry, Bahir Dar University, 79, Bahir Dar, Ethiopia
3Department of Chemistry, University of Gondar, 196, Gondar, Ethiopia
4Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C

Tài liệu tham khảo

Morita, 2007, 156 Moshkovich, 2001, Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions, J. Electrochem. Soc., 148, E155, 10.1149/1.1357316 Cheng, 2007, In situ micro-FTIR study of the solid–solid interface between lithium electrode and polymer electrolytes, J. Power Sources, 174, 1027, 10.1016/j.jpowsour.2007.06.213 Sharabi, 2010, In Situ FTIR Spectroscopy Study of Li/LiNi0.8Co0.15Al0.05O2 Cells with Ionic Liquid-Based Electrolytes in Overcharge Condition, Electrochem. Solid-State Lett., 13, A32, 10.1149/1.3292635 Lombardo, 2012, Mixtures of ionic liquid - Alkylcarbonates as electrolytes for safe lithium-ion batteries, J. Power Sources, 227, 8, 10.1016/j.jpowsour.2012.11.017 Gnanaraj, 2003, LiPF3(CF2CF3)(3). A salt for rechargeable lithium ion batteries, J. Electrochem. Soc., 150, A445, 10.1149/1.1557965 Aravindan, 2011, Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chem. Eur. J., 17, 14326, 10.1002/chem.201101486 Gmitter, 2012, Electrolyte development for improved cycling performance of bismuth fluoride nanocomposite positive electrodes, J. Power Sources, 217, 21, 10.1016/j.jpowsour.2012.05.104 Aurbach, 2004, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochim. Acta, 50, 247, 10.1016/j.electacta.2004.01.090 Smart, 2011, Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells, J. Electrochem. Soc., 158, A379, 10.1149/1.3544439 Fong, 1990, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells, J. Electrochem. Soc., 137, 2009, 10.1149/1.2086855 Xu, 2009, Whether EC and PC Differ in Interphasial Chemistry on Graphitic Anode and How, J. Electrochem. Soc., 156, A751, 10.1149/1.3166182 Zhuang, 2005, A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy, Electrochem. Solid-State Lett., 8, A441, 10.1149/1.1979327 Chung, 2000, Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation, J. Electrochem. Soc., 147, 4391, 10.1149/1.1394076 Aurbach, 2002, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148, 405, 10.1016/S0167-2738(02)00080-2 Wang, 2009, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochim. Acta, 54, 3344, 10.1016/j.electacta.2008.12.032 Wang, 2011, Aging Effects to Solid Electrolyte Interface (SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries, Int. J. Electrochem. Sci., 6, 1014, 10.1016/S1452-3981(23)15052-8 Kim, 2010, Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery, Energies, 3, 866, 10.3390/en3040866 Cheng, 2012, Aqueous Additive for Lithium Ion Batteries: Promotes Novel Solid Electrolyte Interface (SEI) Layer with Overall Cost Reduction, Int. J. Electrochem. Sci., 7, 8676, 10.1016/S1452-3981(23)18024-2 Haregewoin, 2013, A combined experimental and theoretical study of surface film formation: Effect of oxygen on the reduction mechanism of propylene carbonate, J. Power Sources, 244, 318, 10.1016/j.jpowsour.2013.01.030 Haregewoin, 2013, An Effective In Situ Drifts Analysis of the Solid Electrolyte Interface in Lithium-Ion Battery, ECS Trans., 53, 23, 10.1149/05336.0023ecst R.C. Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J., Tomasi, V., Barone, B., Mennucci, M., Cossi, G., Scalmani, N., Rega, G. A. Petersson, H., Nakatsuji, M., Hada, M., Ehara, K., Toyota, R., Fukuda, J., Hasegawa, M., Ishida, T., Nakajima, Y., Honda, O., Kitao, H., Nakai, M., Klene, X., Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V., Bakken, C., Adamo, J., Jaramillo, R., Gomperts, R. E. Stratmann, O., Yazyev, A. J. Austin, R., Cammi, C., Pomelli, J. W. Ochterski, P. Y. Ayala, K., Morokuma, G. A. Voth, P., Salvador, J. J. Dannenberg, V. G. Zakrzewski, S., Dapprich, A. D. Daniels, M. C. Strain, O., Farkas, D. K. Malick, A. D. Rabuck, K., Raghavachari, J. B. Foresman, J. V. Ortiz, Q., Cui, A. G. Baboul, S., Clifford, J., Cioslowski, B. B. Stefanov, G., Liu, A., Liashenko, P., Piskorz, I., Komaromi, R. L. Martin, D. J. Fox, T., Keith, M. A. Al-Laham, C. Y. Peng, A., Nanayakkara, M., Challacombe, P. M. W. Gill, B., Johnson, W., Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785 Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913 Stephens, 1994, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem., 98, 11623, 10.1021/j100096a001 Vosko, 1980, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 58, 1200, 10.1139/p80-159 Marenich, 2009, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B, 113, 6378, 10.1021/jp810292n Herstedt, 2004, Characterisation of the SEI formed on natural graphite in PC-based electrolytes, Electrochim. Acta, 49, 4939, 10.1016/j.electacta.2004.06.006 Tobishima, 1984, Ethylene carbonate—propylene carbonate mixed electrolytes for lithium batteries, Electrochim. Acta, 29, 267, 10.1016/0013-4686(84)87058-9 Zhang, 2004, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochim. Acta, 49, 1475, 10.1016/j.electacta.2003.10.033 Zhang, 2006, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochim. Acta, 51, 1636, 10.1016/j.electacta.2005.02.137 Wang, 2000, 489 Zhao, 2010, Kinetic Investigation of LiCoO2 by Electrochemical Impedance Spectroscopy (EIS), Int. J. Electrochem. Sci, 5, 478, 10.1016/S1452-3981(23)15299-0 Yao, 2009, Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries, Energy Environ. Sci, 2, 1102, 10.1039/b905162g Kim, 2006, Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte, Bull. Korean Chem. Soc., 27, 82, 10.5012/bkcs.2006.27.1.082 Aurbach, 2006, Why Graphite Electrodes Fail in Pc Solutions: An Insight from Morphological Studies, 197 Lee, 2005, Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries, J. Electrochem. Soc., 152, A1837, 10.1149/1.1993407 Xu, 2004, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g Aurbach, 1991, The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, J. Electroanal. Chem. Interfacial Electrochem., 297, 225, 10.1016/0022-0728(91)85370-5 Zhang, 2001, Electrochemical and Infrared Studies of the Reduction of Organic Carbonates, J. Electrochem. Soc., 148, A1341, 10.1149/1.1415547 Aurbach, 1989, The electrochemical behavior of selected polar aprotic systems, Electrochim. Acta, 34, 141, 10.1016/0013-4686(89)87079-3 Myung, 2009, Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt, Electrochim. Acta, 54, 5804, 10.1016/j.electacta.2009.05.035 Bu, 1998, Correlation study of Franck-Condon barriers associated with electron self-exchange reactions with ionization potentials and electron affinities and experimental Born-Oppenheimer potentials, J. Mol. Struct.,THEOCHEM, 422, 219, 10.1016/S0166-1280(97)00098-5 Zhang, 2001, Electrochemical and Infrared Studies of the Reduction of Organic Carbonates, J. Electrochem. Soc., 148, A1341, 10.1149/1.1415547 Imhof, 1998, In Situ Investigation of the Electrochemical Reduction of Carbonate Electrolyte Solutions at Graphite Electrodes, J. Electrochem. Soc., 145, 1081, 10.1149/1.1838420 Naji, 1996, Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy, J. Power Sources, 63, 33, 10.1016/S0378-7753(96)02439-1 Yamaguchi, 1998, SEI Film Formation On Graphite Anode Surfaces In Lithium Ion Battery, Mol Cryst Liq Cryst Sci Technol, Sect A, 322, 239, 10.1080/10587259808030230 Wang, 2001, Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: Reduction Mechanisms of Ethylene Carbonate, J. Am. Chem. Soc., 123, 11708, 10.1021/ja0164529 Tasaki, 2005, Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations, J Phys Chem B, 109, 2920, 10.1021/jp047240b Leggesse, 2012, Theoretical study of the reductive decomposition of 1,3-propane sultone: SEI forming additive in lithium-ion batteries, RSC Advances, 2, 5439, 10.1039/c2ra20200j Leggesse, 2012, Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries, J. Phys. Chem. A, 116, 11025, 10.1021/jp3081996 Xing, 2009, Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery, J. Power Sources, 189, 689, 10.1016/j.jpowsour.2008.08.076 Vollmer, 2004, Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates: A Quantum Chemical Study,, J. Electrochem. Soc, 151, A178, 10.1149/1.1633765 Marten, 1996, New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects, J. Phys. Chem., 100, 11775, 10.1021/jp953087x Bhatt, 2012, Conduction of Li+ cations in ethylene carbonate (EC) and propylene carbonate (PC): comparative studies using density functional theory, J Solid State Electrochem, 16, 435, 10.1007/s10008-011-1350-7 Aurbach, 1995, Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems, J. Power Sources, 54, 76, 10.1016/0378-7753(94)02044-4 Hardwick, 2008, An Investigation of the Effect of Graphite Degradation on Irreversible Capacity in Lithium-ion Cells, J. Electrochem. Soc., 155, A442, 10.1149/1.2903882 Zhuang, 2003, Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy, Electrochem. Solid-State Lett., 6, A136, 10.1149/1.1575594 Morigaki, 2002, In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions, J. Power Sources, 103, 253, 10.1016/S0378-7753(01)00858-8 Ikezawa, 2007, In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface, Electrochim. Acta, 52, 2710, 10.1016/j.electacta.2006.09.050 Kang, 2008, Investigating the solid electrolyte interphase using binder-free graphite electrodes, J. Power Sources, 175, 526, 10.1016/j.jpowsour.2007.08.112 Xu, 2003, Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes, Electrochem. Solid-State Lett., 6, A144, 10.1149/1.1576049 Zhuang, 2005, Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2M LiPF6/EC:EMC Electrolyte, J. Phys. Chem. B, 109, 17567, 10.1021/jp052474w Joho, 2000, SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells, Electrochim. Acta, 45, 3589, 10.1016/S0013-4686(00)00480-1 Silverstein, 2005 Mogi, 2003, Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy, J. Power Sources, 119–121, 597, 10.1016/S0378-7753(03)00302-1 Pyun, 1998, In-situ spectroelectrochemical analysis of the passivating surface film formed on a graphite electrode during the electrochemical reduction of lithium salts and organic carbonate solvent, J. Electroanal. Chem., 455, 11, 10.1016/S0022-0728(98)00154-5 Pyun, 1999, In-situ spectroelectrochemical analysis of the passivating surface film formed on a carbon film electrode as a function of the water content in 1M LiPF6-EC/DEC solution, Fresenius J Anal Chem, 363, 38, 10.1007/s002160051135 Aurbach, 2002, Levi Morphology/Behavior Relationship in Reversible Electrochemical Lithium Insertion into Graphitic Materials, J. Electrochem. Soc., 149, A1255, 10.1149/1.1502683 Mori, 1997, Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions, J. Power Sources, 68, 59, 10.1016/S0378-7753(97)02619-0 Yang, 1998, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte, J. Power Sources, 72, 66, 10.1016/S0378-7753(97)02655-4 Aurbach, 2003, Electrode–solution interactions in Li-ion batteries: a short summary and new insights, J. Power Sources, 119–121, 497, 10.1016/S0378-7753(03)00273-8