Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather

Nature Climate Change - Tập 10 Số 1 - Trang 20-29 - 2020
Cohen, J.1,2, Zhang, X.3, Francis, J.4, Jung, T.5,6, Kwok, R.7, Overland, J.8, Ballinger, T. J.9, Bhatt, U. S.3, Chen, H. W.10,11, Coumou, D.12,13, Feldstein, S.11, Gu, H.14, Handorf, D.5, Henderson, G.15, Ionita, M.5, Kretschmer, M.13, Laliberte, F.16, Lee, S.11, Linderholm, H. W.17,18, Maslowski, W.19, Peings, Y.20, Pfeiffer, K.1, Rigor, I.21, Semmler, T.5, Stroeve, J.22, Taylor, P. C.23, Vavrus, S.24, Vihma, T.25, Wang, S.14, Wendisch, M.26, Wu, Y.27, Yoon, J.28
1Atmospheric and Environmental Research, Inc., Lexington, USA
2Massachusetts Institute of Technology, Cambridge, USA
3University of Alaska Fairbanks, Fairbanks, USA
4Woods Hole Research Center, Falmouth, USA
5Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
6University of Bremen, Bremen, Germany
7Jet Propulsion Laboratory, Pasadena, USA
8NOAA PMEL, Seattle, USA
9Department of Geography, Texas State University, San Marcos, USA
10Lund University, Lund, Sweden
11Pennsylvania State University, State College, USA
12Potsdam Institute for Climate Impact Research, Potsdam, Germany
13Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
14Utah Climate Center/Department of Plants, Soils and Climate, Utah State University, Logan, USA
15United States Naval Academy, Annapolis, USA
16Environment and Climate Change Canada, Gatineau, Canada
17University of Gothenburg, Gothenburg, Sweden
18University of Cambridge, Cambridge, UK
19[Naval Postgraduate School, Monterey, USA]
20University of California, Irvine USA
21University of Washington SEATTLE USA
22University College London, London, UK
23NASA Langley Research Center, Hampton, USA
24University of Wisconsin, Madison, USA
25Finnish Meteorological Institute, Helsinki, Finland
26University of Leipzig, Leipzig, Germany
27Lamont-Doherty Earth Observatory, Columbia University, Palisades, USA
28Gwangju Institute of Science and Technology, Gwangju, South Korea

Tóm tắt

The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather. Amplified warming in the Arctic has been linked to weather variability in the midlatitudes. This Review considers the evidence from both observations and modelling studies on this link for increasing severe winter weather, including cold temperatures and heavy snowfalls.

Từ khóa


Tài liệu tham khảo

citation_journal_title=Geophysical Research Letters; citation_title=Evidence linking Arctic amplification to extreme weather in mid-latitudes; citation_author=Jennifer A. Francis, Stephen J. Vavrus; citation_volume=39; citation_issue=6; citation_publication_date=2012; citation_pages=n/a-n/a; citation_id=CR1

Cohen, J. et al. Arctic Change and Possible Influence on Mid-latitude Climate and Weather. US CLIVAR Report 2018-1, https://doi.org/10.5065/D6TH8KGW (2018).

citation_journal_title=Geophysical Research Letters; citation_title=Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations; citation_author=Julienne C. Stroeve, Vladimir Kattsov, Andrew Barrett, Mark Serreze, Tatiana Pavlova, Marika Holland, Walter N. Meier; citation_volume=39; citation_issue=16; citation_publication_date=2012; citation_pages=n/a-n/a; citation_id=CR3

citation_journal_title=Nat. Geosci.; citation_title=Arctic amplification dominated by temperature feedbacks in contemporary climate models; citation_author=F Pithan, T Mauritsen; citation_volume=7; citation_publication_date=2014; citation_pages=181-184; citation_id=CR4

citation_journal_title=Atmos. Chem. Phys.; citation_title=Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: a review; citation_author=R Döscher, T Vihma, E Maksimovich; citation_volume=14; citation_publication_date=2014; citation_pages=13571-13600; citation_id=CR5

Wendisch, M. et al. Understanding causes and effects of rapid warming in the Arctic. Eos 98, https://doi.org/10.1029/2017EO064803 (2017).

citation_journal_title=Surv. Geophys.; citation_title=Effects of Arctic sea ice decline on weather and climate: a review; citation_author=T Vihma; citation_volume=35; citation_publication_date=2014; citation_pages=1175-1214; citation_id=CR7

citation_journal_title=J. Clim.; citation_title=The melting Arctic and mid-latitude weather patterns: are they connected?; citation_author=JE Overland; citation_volume=28; citation_publication_date=2015; citation_pages=7917-7932; citation_id=CR8

citation_journal_title=Nat. Geosci.; citation_title=Recent Arctic amplification and extreme mid-latitude weather; citation_author=J Cohen; citation_volume=7; citation_publication_date=2014; citation_pages=627-637; citation_id=CR9

citation_journal_title=Polar Res.; citation_title=Warm Arctic–cold continents: impacts of the newly open Arctic Sea; citation_author=JE Overland, KR Wood, M Wang; citation_volume=30; citation_publication_date=2011; citation_pages=15787; citation_id=CR10

citation_journal_title=Oceanography; citation_title=Warm Arctic, cold continents: a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather; citation_author=J Cohen, J Jones, JC Furtado, E Tziperman; citation_volume=26; citation_publication_date=2013; citation_pages=150-160; citation_id=CR11

citation_journal_title=Nat. Geosci.; citation_title=Two distinct influences of Arctic warming on cold winters over North America and East Asia; citation_author=J-S Kug; citation_volume=8; citation_publication_date=2015; citation_pages=759-762; citation_id=CR12

citation_journal_title=Geophys. Res. Lett.; citation_title=What caused the recent ‘Warm Arctic, Cold Continents’ trend pattern in winter temperatures?; citation_author=L Sun, J Perlwitz, M Hoerling; citation_volume=43; citation_publication_date=2016; citation_pages=5345-5352; citation_id=CR13

citation_journal_title=J. Clim.; citation_title=The NAO, the AO, and global warming: how closely related?; citation_author=J Cohen, M Barlow; citation_volume=18; citation_publication_date=2005; citation_pages=4498-4513; citation_id=CR14

citation_journal_title=J. Clim.; citation_title=Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter; citation_author=J Cohen, M Barlow, K Saito; citation_volume=22; citation_publication_date=2009; citation_pages=4418-4426; citation_id=CR15

citation_journal_title=Environmental Research Letters; citation_title=Warm Arctic−cold Siberia: comparing the recent and the early 20th-century Arctic warmings; citation_author=Martin Wegmann, Yvan Orsolini, Olga Zolina; citation_volume=13; citation_issue=2; citation_publication_date=2018; citation_pages=025009; citation_id=CR16

citation_journal_title=Environ. Res. Lett.; citation_title=Arctic warming, increasing fall snow cover and widespread boreal winter cooling; citation_author=J Cohen, J Furtado, M Barlow, V Alexeev, J Cherry; citation_volume=7; citation_publication_date=2012; citation_pages=014007; citation_id=CR17

citation_journal_title=Nat. Commun.; citation_title=The influence of Arctic amplification on mid-latitude summer circulation; citation_author=D Coumou, G Capua, S Vavrus, L Wang, S Wang; citation_volume=9; citation_publication_date=2018; citation_id=CR18

citation_journal_title=Climatic Change; citation_title=Vertical structure of recent Arctic warming from observed data and reanalysis products; citation_author=VA Alexeev; citation_volume=111; citation_publication_date=2012; citation_pages=215-239; citation_id=CR19

Vihma, T. in Climate Extremes: Patterns and Mechanisms (eds Wang, S.-Y. S. et al.) Ch. 2 (AGU Geophysical Monograph Series 226, 2017).

citation_journal_title=J. Clim.; citation_title=Current GCMs’ unrealistic negative feedback in the Arctic; citation_author=J Boe, A Hall, X Qu; citation_volume=22; citation_publication_date=2009; citation_pages=4682-4695; citation_id=CR21

citation_journal_title=Clim. Dyn.; citation_title=Polar amplification of surface warming on an aquaplanet in ‘ghost forcing’ experiments without sea ice feedbacks; citation_author=VA Alexeev, PL Langen, JR Bates; citation_volume=24; citation_publication_date=2005; citation_pages=655-666; citation_id=CR22

citation_journal_title=J. Atmos. Sci.; citation_title=The effects of doubling the CO2 concentration on the climate of a general circulation model; citation_author=S Manabe, RT Wetherald; citation_volume=32; citation_publication_date=1975; citation_pages=3-15; citation_id=CR23

citation_journal_title=Nat. Clim. Change; citation_title=Polar amplification dominated by local forcing and feedbacks; citation_author=MF Stuecker; citation_volume=8; citation_publication_date=2018; citation_pages=1076-1081; citation_id=CR24

citation_journal_title=Nat. Commun.; citation_title=Arctic amplification is caused by sea-ice loss under increasing CO2; citation_author=A Dai, D Luo, M Song, J Liu; citation_volume=10; citation_publication_date=2019; citation_id=CR25

citation_journal_title=J. Clim.; citation_title=Response of sea ice to the Arctic Oscillation; citation_author=IG Rigor, M Wallace, R Colony; citation_volume=15; citation_publication_date=2002; citation_pages=2648-2663; citation_id=CR26

citation_journal_title=J. Clim.; citation_title=Arctic sea-ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice–ocean model; citation_author=X Zhang, M Ikeda, JE Walsh; citation_volume=16; citation_publication_date=2003; citation_pages=2159-2177; citation_id=CR27

citation_journal_title=Geophys. Res. Lett.; citation_title=Recent radical shifts in atmospheric circulations and rapid changes in Arctic climate system; citation_author=X Zhang, A Sorteberg, J Zhang, R Gerdes, JC Comiso; citation_volume=35; citation_publication_date=2008; citation_pages=L22701; citation_id=CR28

citation_journal_title=Nat. Clim. Change; citation_title=Enhanced poleward moisture transport and amplified northern high-latitude wetting trend; citation_author=X Zhang; citation_volume=3; citation_publication_date=2013; citation_pages=47-51; citation_id=CR29

citation_journal_title=J. Clim.; citation_title=Attribution of the recent winter sea-ice decline over the Atlantic sector of the Arctic Ocean; citation_author=D-S Park, S Lee, SB Feldstein; citation_volume=28; citation_publication_date=2015; citation_pages=4027-4033; citation_id=CR30

citation_journal_title=J. Clim.; citation_title=The role of downward infrared radiation in the recent Arctic winter warming trend; citation_author=T Gong, SB Feldstein, S Lee; citation_volume=30; citation_publication_date=2017; citation_pages=4937-4949; citation_id=CR31

citation_journal_title=J. Clim.; citation_title=Midlatitude moisture contribution to recent Arctic tropospheric summertime variability; citation_author=F Laliberte, PJ Kushner; citation_volume=27; citation_publication_date=2014; citation_pages=5693-5706; citation_id=CR32

citation_journal_title=Nat. Clim. Change; citation_title=Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice; citation_author=Q Ding; citation_volume=7; citation_publication_date=2017; citation_pages=289-295; citation_id=CR33

Perovich, D. K., Richter-Menge, J. A., Jones, K. F. & Light, B. Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008gl034007 (2008).

citation_journal_title=Proc. Natl Acad. Sci. USA; citation_title=Observational determination of albedo decrease caused by vanishing Arctic sea ice; citation_author=K Pistone, I Eisenman, V Ramanathan; citation_volume=111; citation_publication_date=2014; citation_pages=3322-3326; citation_id=CR35

citation_journal_title=Environ. Res. Lett.; citation_title=Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction; citation_author=J-H Jeong; citation_volume=9; citation_publication_date=2014; citation_pages=094007; citation_id=CR36

citation_journal_title=Geophys. Res. Lett.; citation_title=The recent shift in early summer Arctic atmospheric circulation; citation_author=JE Overland, JA Francis, E Hanna, M Wang; citation_volume=39; citation_publication_date=2012; citation_pages=L19804; citation_id=CR37

citation_journal_title=Climatic Change; citation_title=The arctic amplification debate; citation_author=MC Serreze, JA Francis; citation_volume=76; citation_publication_date=2006; citation_pages=241-264; citation_id=CR38

citation_journal_title=Nature; citation_title=The central role of diminishing sea ice in recent Arctic temperature amplification; citation_author=JA Screen, I Simmonds; citation_volume=464; citation_publication_date=2010; citation_pages=1334-1337; citation_id=CR39

citation_journal_title=Nat. Geosci.; citation_title=Role of air-mass transformations in exchange between the Arctic and mid-latitudes; citation_author=F Pithan; citation_volume=11; citation_publication_date=2018; citation_pages=805-812; citation_id=CR40

citation_journal_title=J. Geophys. Res.; citation_title=Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data; citation_author=LN Boisvert, DL Wu, C-L Shie; citation_volume=120; citation_publication_date=2015; citation_pages=6865-6881; citation_id=CR41

citation_journal_title=Geophys. Res. Lett.; citation_title=The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder; citation_author=LN Boisvert, JC Stroeve; citation_volume=42; citation_publication_date=2015; citation_pages=4439-4446; citation_id=CR42

citation_journal_title=Atmosphere; citation_title=On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review; citation_author=Patrick Taylor, Bradley Hegyi, Robyn Boeke, Linette Boisvert; citation_volume=9; citation_issue=2; citation_publication_date=2018; citation_pages=41; citation_id=CR43

citation_journal_title=Geophys. Res. Lett.; citation_title=Amplified Arctic climate change: what does surface albedo feedback have to do with it?; citation_author=M Winton; citation_volume=33; citation_publication_date=2006; citation_pages=L03701; citation_id=CR44

citation_journal_title=Bull. Am. Meteorol. Soc.; citation_title=The Arctic cloud puzzle: using ACLOUD/PASCAL multi-platform observations to unravel the role of clouds and aerosol particles in Arctic amplification; citation_author=M Wendisch; citation_volume=100; citation_publication_date=2019; citation_pages=841-871; citation_id=CR45

citation_journal_title=J. Geophys. Res. Atmos.; citation_title=Observational constraints on Arctic ocean clouds and radiative fluxes during the early 21st century; citation_author=JE Kay, T L’Ecuyer; citation_volume=118; citation_publication_date=2013; citation_pages=7219-7236; citation_id=CR46

citation_journal_title=Nat. Commun.; citation_title=Seasonal energy exchanges in sea ice retreat regions contribute to the inter-model spread in projected Arctic warming; citation_author=RC Boeke, PC Taylor; citation_volume=9; citation_publication_date=2018; citation_id=CR47

Intrieri, J. M. et al. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107, https://doi.org/10.1029/2000JC000423 (2002).

citation_journal_title=Bull. Am. Meteorol. Soc.; citation_title=Surface heat budget of the Arctic Ocean; citation_author=T Uttal; citation_volume=83; citation_publication_date=2002; citation_pages=255-275; citation_id=CR49

Francis, J. A., Hunter, E., Key, J. R. & Wang, X. Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL024376 (2005).

citation_journal_title=Journal of Climate; citation_title=Simulated Atmospheric Response to Regional and Pan-Arctic Sea Ice Loss; citation_author=James A. Screen; citation_volume=30; citation_issue=11; citation_publication_date=2017; citation_pages=3945-3962; citation_id=CR51

citation_journal_title=Environmental Research Letters; citation_title=Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum; citation_author=Yinghui Liu, Jeffrey R Key; citation_volume=9; citation_issue=4; citation_publication_date=2014; citation_pages=044002; citation_id=CR52

citation_journal_title=Asia-Pac. J. Atmos. Sci.; citation_title=A theory for polar amplification from a general circulation perspective; citation_author=S Lee; citation_volume=50; citation_publication_date=2014; citation_pages=31-43; citation_id=CR53

citation_journal_title=J. Clim.; citation_title=The impact of Arctic winter infrared radiation on early summer sea ice; citation_author=H-S Park, S Lee, Y Kosaka, S-W Son, S-W Kim; citation_volume=28; citation_publication_date=2015; citation_pages=6281-6296; citation_id=CR54

citation_journal_title=Geophys. Res. Lett.; citation_title=The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth; citation_author=BM Hegyi, PC Taylor; citation_volume=44; citation_publication_date=2017; citation_pages=4341-4350; citation_id=CR55

citation_journal_title=J. Clim.; citation_title=The role of moist intrusions in winter Arctic warming and sea ice decline; citation_author=C Woods, R Caballero; citation_volume=29; citation_publication_date=2016; citation_pages=4473-4485; citation_id=CR56

citation_journal_title=Sci. Rep.; citation_title=Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm; citation_author=B-M Kim; citation_volume=7; citation_publication_date=2017; citation_id=CR57

citation_journal_title=Geophys. Res. Lett.; citation_title=The unprecedented 2016–17 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes; citation_author=BM Hegyi, PC Taylor; citation_volume=45; citation_publication_date=2018; citation_pages=5204-5212; citation_id=CR58

citation_journal_title=J. Clim.; citation_title=On the drivers of wintertime temperature extremes in the High Arctic; citation_author=G Messori, C Woods, R Caballero; citation_volume=31; citation_publication_date=2018; citation_pages=1597-1618; citation_id=CR59

Holton, J. R. An Introduction to Dynamic Meteorology 2nd edn (Academic, 1979).

citation_journal_title=Geophys. Res. Lett.; citation_title=Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes; citation_author=EA Barnes; citation_volume=40; citation_publication_date=2013; citation_pages=4734-4739; citation_id=CR61

citation_journal_title=Geophys. Res. Lett.; citation_title=Exploring links between Arctic amplification and mid‐latitude weather; citation_author=JA Screen, I Simmonds; citation_volume=40; citation_publication_date=2013; citation_pages=959-964; citation_id=CR62

citation_journal_title=Tellus; citation_title=Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action; citation_author=DF Rex; citation_volume=2; citation_publication_date=1950; citation_pages=196-211; citation_id=CR63

citation_journal_title=Tellus; citation_title=Blocking action in the middle troposphere and its effect upon regional climate. II. The climatology of blocking actions; citation_author=DP Rex; citation_volume=2; citation_publication_date=1950; citation_pages=275-301; citation_id=CR64

citation_journal_title=Geophys. Res. Lett.; citation_title=Tropospheric–stratospheric interaction in the major warming event of January–February 1979; citation_author=RS Quiroz; citation_volume=6; citation_publication_date=1979; citation_pages=645-648; citation_id=CR65

citation_journal_title=J. Geophys. Res.; citation_title=The association of stratospheric warmings with tropospheric blocking; citation_author=RS Quiroz; citation_volume=91; citation_publication_date=1986; citation_pages=5277-5285; citation_id=CR66

citation_journal_title=Geophys. Res. Lett.; citation_title=Blocking precursors to stratospheric sudden warming events; citation_author=O Martius, LM Polvani, HC Davies; citation_volume=36; citation_publication_date=2009; citation_pages=L14806; citation_id=CR67

citation_journal_title=Science; citation_title=Stratospheric harbingers of anomalous weather regimes; citation_author=MP Baldwin, TJ Dunkerton; citation_volume=294; citation_publication_date=2001; citation_pages=581-584; citation_id=CR68

Kim, B.-M. et al. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 5, https://doi.org/10.1038/ncomms5646 (2014). Early paper that established stratospheric pathway for atmospheric response to sea ice loss in the Barents–Kara sea in both observations and modelling experiments.

citation_journal_title=Bull. Am. Meteorol. Soc.; citation_title=More frequent weak stratospheric polar vortex states linked to mid-latitude cold extremes; citation_author=M Kretschmer; citation_volume=99; citation_publication_date=2018; citation_pages=49-60; citation_id=CR70

Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, https://doi.org/10.1029/2008GL037079 (2009). Early paper showing through model experiments that sea ice loss in the Barents–Kara Seas can force in cold Siberian temperatures by exciting a Rossby wave train.

citation_journal_title=J. Clim.; citation_title=Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking; citation_author=J Sillmann, M Croci-Maspoli, M Kallache, RW Katz; citation_volume=24; citation_publication_date=2011; citation_pages=5899-5913; citation_id=CR72

citation_journal_title=Environ. Res. Lett.; citation_title=Weakened cyclones, intensified anticyclones, and the recent extreme cold winter weather events in Eurasia; citation_author=X Zhang, C Lu, Z Guan; citation_volume=7; citation_publication_date=2012; citation_pages=044044; citation_id=CR73

citation_journal_title=Nat. Commun.; citation_title=Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States; citation_author=J Cohen, K Pfeiffer, J Francis; citation_volume=9; citation_publication_date=2018; citation_id=CR74

citation_journal_title=Nat. Commun.; citation_title=Increasing occurrence of cold and warm extremes during the recent global warming slowdown; citation_author=NC Johnson, S-P Xie, Y Kosaka, X Li; citation_volume=9; citation_publication_date=2018; citation_id=CR75

citation_journal_title=Int. J. Climatol.; citation_title=Greenland Blocking Index daily series 1851-2015: analysis of changes in extremes and links with North Atlantic and UK climate variability and change; citation_author=E Hanna; citation_volume=38; citation_publication_date=2018; citation_pages=3546-3564; citation_id=CR76

Lee, S. H., Charlton-Perez, A. J., Furtado, J. C. & Woolnough, S. J. Abrupt stratospheric vortex weakening associated with North Atlantic anticyclonic wave breaking. J. Geophys. Res. 124, https://doi.org/10.1029/2019JD030940 (2019).

citation_journal_title=Nat. Clim. Change; citation_title=Nonlinear response of mid-latitude weather to the changing Arctic; citation_author=JE Overland; citation_volume=6; citation_publication_date=2016; citation_pages=992-999; citation_id=CR78

citation_journal_title=Science; citation_title=Effects of Arctic warming; citation_author=TG Shepherd; citation_volume=353; citation_publication_date=2016; citation_pages=989-990; citation_id=CR79

citation_journal_title=Earth’s Future; citation_title=Resolving future Arctic/Midlatitude weather connections; citation_author=JE Overland, M Wang; citation_volume=6; citation_publication_date=2018; citation_pages=1146-1152; citation_id=CR80

citation_journal_title=Nat. Clim. Change; citation_title=Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability; citation_author=JA Screen, JA Francis; citation_volume=6; citation_publication_date=2016; citation_pages=856-860; citation_id=CR81

citation_journal_title=Weather; citation_title=Recent United Kingdom and global temperature variations; citation_author=TJ Osborn, PD Jones, M Joshi; citation_volume=72; citation_publication_date=2017; citation_pages=323-329; citation_id=CR82

citation_journal_title=Geophys. Res. Lett.; citation_title=Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline; citation_author=F Li, YJ Orsolini, H Wang, Y Gao, S He; citation_volume=45; citation_publication_date=2018; citation_pages=2497-2506; citation_id=CR83

citation_journal_title=Tellus A: Dynamic Meteorology and Oceanography; citation_title=Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation; citation_author=R. Jaiser, K. Dethloff, D. Handorf, A. Rinke, J. Cohen; citation_volume=64; citation_issue=1; citation_publication_date=2012; citation_pages=11595; citation_id=CR84

citation_journal_title=J. Clim.; citation_title=Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations; citation_author=T Semmler; citation_volume=29; citation_publication_date=2016; citation_pages=5893-5913; citation_id=CR85

citation_journal_title=Earth’s Future; citation_title=Eurasian winter storm activity at the end of the century: a CMIP5 multi-model ensemble projection; citation_author=S Basu, X Zhang, Z Wang; citation_volume=6; citation_publication_date=2018; citation_pages=61-70; citation_id=CR86

citation_journal_title=J. Clim.; citation_title=The role of linear interference in Northern Annular Mode variability associated with Eurasian snow cover extent; citation_author=K Smith, PJ Kushner, J Cohen; citation_volume=24; citation_publication_date=2011; citation_pages=6185-6202; citation_id=CR87

citation_journal_title=J. Clim.; citation_title=Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model; citation_author=Y Wu, KL Smith; citation_volume=29; citation_publication_date=2016; citation_pages=2041-2058; citation_id=CR88

citation_journal_title=J. Clim.; citation_title=Stratosphere–troposphere coupling and links with Eurasian land surface variability; citation_author=J Cohen, M Barlow, PJ Kushner, K Saito; citation_volume=20; citation_publication_date=2007; citation_pages=5335-5343; citation_id=CR89

citation_journal_title=Earth Syst. Sci. Data; citation_title=A sudden stratospheric warming compendium; citation_author=AH Butler, JP Sjoberg, DJ Seidel, KH Rosenlof; citation_volume=9; citation_publication_date=2017; citation_pages=63-76; citation_id=CR90

citation_journal_title=Nature; citation_title=Response of a general circulation model of the atmosphere to removal of the Arctic ice-cap; citation_author=RL Newson; citation_volume=241; citation_publication_date=1973; citation_pages=39-40; citation_id=CR91

citation_journal_title=J. Appl. Meteorol.; citation_title=An experiment on the sensitivity of a global circulation model; citation_author=M Warshaw, RR Rapp; citation_volume=12; citation_publication_date=1973; citation_pages=43-49; citation_id=CR92

citation_journal_title=J. Clim.; citation_title=The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response; citation_author=G Magnusdottir, C Deser, R Saravanan; citation_volume=17; citation_publication_date=2004; citation_pages=857-876; citation_id=CR93

citation_journal_title=J. Clim.; citation_title=The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response; citation_author=C Deser, G Magnusdottir, R Saravanan, A Phillips; citation_volume=17; citation_publication_date=2004; citation_pages=877-889; citation_id=CR94

citation_journal_title=J. Clim.; citation_title=The atmospheric response to realistic Arctic sea-ice anomalies in an AGCM during winter; citation_author=MA Alexander; citation_volume=17; citation_publication_date=2004; citation_pages=890-905; citation_id=CR95

citation_journal_title=J. Clim.; citation_title=The atmospheric impact of uncertainties in recent Arctic sea-ice reconstructions; citation_author=JS Singarayer, PJ Valdes, JL Bamber; citation_volume=18; citation_publication_date=2005; citation_pages=3996-4012; citation_id=CR96

citation_journal_title=Nat. Geosci.; citation_title=Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea ice loss; citation_author=KE McCusker, JC Fyfe, M Sigmond; citation_volume=9; citation_publication_date=2016; citation_pages=838-842; citation_id=CR97

citation_journal_title=J. Clim.; citation_title=Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system; citation_author=R Blackport, PJ Kushner; citation_volume=30; citation_publication_date=2017; citation_pages=2163-2185; citation_id=CR98

citation_journal_title=Geophys. Res. Lett.; citation_title=Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change; citation_author=F Ogawa; citation_volume=45; citation_publication_date=2018; citation_pages=3255-3263; citation_id=CR99

citation_journal_title=J. Clim.; citation_title=Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss; citation_author=L Sun, C Deser, RA Tomas; citation_volume=28; citation_publication_date=2015; citation_pages=7824-7845; citation_id=CR100

citation_journal_title=Geophysical Research Letters; citation_title=Arctic Sea Ice Loss in Different Regions Leads to Contrasting Northern Hemisphere Impacts; citation_author=Christine M. McKenna, Thomas J. Bracegirdle, Emily F. Shuckburgh, Peter H. Haynes, Manoj M. Joshi; citation_volume=45; citation_issue=2; citation_publication_date=2018; citation_pages=945-954; citation_id=CR101

citation_journal_title=J. Clim.; citation_title=Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation; citation_author=K Nishii, H Nakamura, YJ Orsolini; citation_volume=24; citation_publication_date=2011; citation_pages=6408-6423; citation_id=CR102

Petoukhov, V. & Semenov, V. A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. 115, https://doi.org/10.1029/2009JD013568 (2010).

citation_journal_title=Journal of Geophysical Research: Atmospheres; citation_title=Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979-2014; citation_author=Hans W. Chen, Richard B. Alley, Fuqing Zhang; citation_volume=121; citation_issue=24; citation_publication_date=2016; citation_pages=14,433-14,455; citation_id=CR104

citation_journal_title=Nat. Geosci.; citation_title=Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades; citation_author=M Mori, M Watanabe, H Shiogama, J Inoue, M Kimoto; citation_volume=7; citation_publication_date=2014; citation_pages=869-873; citation_id=CR105

citation_journal_title=Nat. Clim. Change; citation_title=A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling; citation_author=M Mori, Y Kosaka, M Watanabe, H Nakamura, M Kimoto; citation_volume=9; citation_publication_date=2019; citation_pages=123-129; citation_id=CR106

citation_journal_title=J. Clim.; citation_title=Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification; citation_author=D Luo, Y Xiao, Y Yao, A Dai, I Simmonds, C Franzke; citation_volume=29; citation_publication_date=2016; citation_pages=3925-3947; citation_id=CR107

citation_journal_title=Geophys. Res. Lett.; citation_title=Arctic sea ice decline and continental cold anomalies: upstream and downstream effects of Greenland blocking; citation_author=X Chen, D Luo; citation_volume=44; citation_publication_date=2017; citation_pages=3411-3419; citation_id=CR108

Vihma, T. et al. Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol., https://doi.org/10.1002/joc.6225 (2019).

citation_journal_title=Tellus; citation_title=Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice; citation_author=JE Overland, M Wang; citation_volume=62A; citation_publication_date=2010; citation_pages=1-9; citation_id=CR110

citation_journal_title=Climatic Change; citation_title=A link between Arctic sea ice and recent cooling trends over Eurasia; citation_author=SD Outten, I Esau; citation_volume=110; citation_publication_date=2012; citation_pages=1069-1075; citation_id=CR111

citation_journal_title=Sci. Adv.; citation_title=A stratospheric pathway linking a colder Siberia to Barents–Kara sea ice loss; citation_author=P Zhang; citation_volume=4; citation_publication_date=2018; citation_pages=eaat6025; citation_id=CR112

citation_journal_title=Nat. Geosci.; citation_title=Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models; citation_author=JA Screen; citation_volume=11; citation_publication_date=2018; citation_pages=155-163; citation_id=CR113

citation_journal_title=Environmental Research Letters; citation_title=Evidence for a wavier jet stream in response to rapid Arctic warming; citation_author=Jennifer A Francis, Stephen J Vavrus; citation_volume=10; citation_issue=1; citation_publication_date=2015; citation_pages=014005; citation_id=CR114

citation_journal_title=Environmental Research Letters; citation_title=Changes in meandering of the Northern Hemisphere circulation; citation_author=Giorgia Di Capua, Dim Coumou; citation_volume=11; citation_issue=9; citation_publication_date=2016; citation_pages=094028; citation_id=CR115

citation_journal_title=Journal of Geophysical Research: Atmospheres; citation_title=Weak Stratospheric Polar Vortex Events Modulated by the Arctic Sea‐Ice Loss; citation_author=Kazuhira Hoshi, Jinro Ukita, Meiji Honda, Tetsu Nakamura, Koji Yamazaki, Yasunobu Miyoshi, Ralf Jaiser; citation_volume=124; citation_issue=2; citation_publication_date=2019; citation_pages=858-869; citation_id=CR116

citation_journal_title=J. Clim.; citation_title=Increased quasi stationarity and persistence of Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses; citation_author=Y Yao, D Luo, A Dai, I Simmonds; citation_volume=30; citation_publication_date=2017; citation_pages=3549-3568; citation_id=CR117

citation_journal_title=J. Geophys. Res.; citation_title=A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn; citation_author=T Nakamura; citation_volume=120; citation_publication_date=2015; citation_pages=3209-3227; citation_id=CR118

citation_journal_title=J. Geophys. Res.; citation_title=Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations; citation_author=R Jaiser; citation_volume=121; citation_publication_date=2016; citation_pages=7564-7577; citation_id=CR119

citation_journal_title=Clim. Dyn.; citation_title=Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts; citation_author=Y Orsolini, R Senan, RE Benestad, A Melsom; citation_volume=38; citation_publication_date=2012; citation_pages=2437-2448; citation_id=CR120

Romanowsky, E. et al. The role of stratospheric ozone for Arctic–midlatitude linkages, Sci. Rep. https://doi.org/10.1038/s41598-019-43823-1 (2019).

citation_journal_title=J. Clim.; citation_title=The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss; citation_author=C Deser, RA Tomas, L Sun; citation_volume=28; citation_publication_date=2015; citation_pages=2168-2186; citation_id=CR122

citation_journal_title=Clim. Dyn.; citation_title=Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability; citation_author=JA Screen, C Deser, I Simmonds, R Tomas; citation_volume=43; citation_publication_date=2014; citation_pages=333-344; citation_id=CR123

citation_journal_title=J. Clim.; citation_title=Atmospheric response to Arctic and Antarctic sea ice: the importance of ocean–atmosphere coupling and the background state; citation_author=DM Smith; citation_volume=30; citation_publication_date=2017; citation_pages=4547-4565; citation_id=CR124

citation_journal_title=Geophys. Res. Lett.; citation_title=Future Arctic sea-ice loss reduces severity of cold air outbreaks in midlatitudes; citation_author=B Ayarzagüena, JA Screen; citation_volume=43; citation_publication_date=2016; citation_pages=2801-2809; citation_id=CR125

citation_journal_title=J. Clim.; citation_title=The robustness of midlatitude weather pattern changes due to Arctic sea ice loss; citation_author=HW Chen, F Zhang, RB Alley; citation_volume=29; citation_publication_date=2016; citation_pages=7831-7849; citation_id=CR126

citation_journal_title=J. Geophys. Res.; citation_title=On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models; citation_author=A Charlton-Perez; citation_volume=118; citation_publication_date=2013; citation_pages=2494-2505; citation_id=CR127

citation_journal_title=Bull. Am. Meteorol. Soc.; citation_title=The North American Multimodel Ensemble; citation_author=BP Kirtman; citation_volume=17; citation_publication_date=2014; citation_pages=585-601; citation_id=CR128

citation_journal_title=Science; citation_title=Global warming and winter weather; citation_author=JM Wallace, IM Held, DWJ Thompson, KE Trenberth, JE Walsh; citation_volume=343; citation_publication_date=2014; citation_pages=729-730; citation_id=CR129

citation_journal_title=Science; citation_title=Into the maelstrom; citation_author=E Kintisch; citation_volume=344; citation_publication_date=2014; citation_pages=250-253; citation_id=CR130

citation_journal_title=Science; citation_title=Arctic impact; citation_author=C Gramling; citation_volume=347; citation_publication_date=2015; citation_pages=818-821; citation_id=CR131

citation_journal_title=Wiley Interdisciplinary Reviews: Climate Change; citation_title=Amplified Arctic warming and mid-latitude weather: new perspectives on emerging connections; citation_author=Jennifer A. Francis, Stephen J. Vavrus, Judah Cohen; citation_volume=8; citation_issue=5; citation_publication_date=2017; citation_pages=e474; citation_id=CR132

citation_journal_title=Curr. Clim. Change Rep.; citation_title=The influence of Arctic amplification on midlatitude weather and climate; citation_author=SJ Vavrus; citation_volume=4; citation_publication_date=2018; citation_pages=238-249; citation_id=CR133

citation_journal_title=Geosci. Model Dev.; citation_title=The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification; citation_author=DM Smith; citation_volume=12; citation_publication_date=2019; citation_pages=1139-1164; citation_id=CR134

Wilks, D. Statistical Methods in the Atmospheric Sciences (Academic, 2006).

citation_journal_title=Nat. Commun.; citation_title=The missing Northern European cooling response to Arctic sea ice loss; citation_author=JA Screen; citation_volume=8; citation_publication_date=2017; citation_id=CR136

citation_journal_title=Nature; citation_title=Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland; citation_author=Q Ding; citation_volume=509; citation_publication_date=2014; citation_pages=209-212; citation_id=CR137

citation_journal_title=Journal of Geophysical Research: Atmospheres; citation_title=Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate; citation_author=Chen Schwartz, Chaim I. Garfinkel; citation_volume=122; citation_issue=8; citation_publication_date=2017; citation_pages=4184-4201; citation_id=CR138

citation_journal_title=Environ. Res. Lett.; citation_title=Effects of stratospheric variability on El Niño teleconnections; citation_author=J Richter, C Deser, L Sun; citation_volume=10; citation_publication_date=2015; citation_pages=124021; citation_id=CR139

citation_journal_title=Q. J. R. Meteorol. Soc.; citation_title=The ERA-Interim reanalysis: configuration and performance of the data assimilation system; citation_author=DP Dee; citation_volume=137; citation_publication_date=2011; citation_pages=553-597; citation_id=CR140

citation_journal_title=Bull. Am. Meteorol. Soc.; citation_title=The NCEP/NCAR 40-year reanalysis project; citation_author=E Kalnay; citation_volume=77; citation_publication_date=1996; citation_pages=437-471; citation_id=CR141

citation_journal_title=Rev. Geophys.; citation_title=Global surface temperature change; citation_author=J Hansen, R Ruedy, M Sato, K Lo; citation_volume=48; citation_publication_date=2010; citation_pages=RG4004; citation_id=CR142

citation_journal_title=J. Geophys. Res.; citation_title=Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset; citation_author=CP Morice, JJ Kennedy, NA Rayner, PD Jones; citation_volume=108117; citation_publication_date=2012; citation_pages=D08101; citation_id=CR143

Neale, R. B. et al. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note NCAR/TN-486+STR (National Center of Atmospheric Research, 2012).

Roeckner, E. et al. The atmospheric general circulation model ECHAM5. Part I: Model description. Technical Report 349 (Max Planck Institute for Meteorology, 2003).

citation_journal_title=J. Geophys. Res.; citation_title=Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century; citation_author=NA Rayner; citation_volume=108; citation_publication_date=2003; citation_pages=4407; citation_id=CR146