Optimizing the number of trees in a decision forest to discover a subforest with high ensemble accuracy using a genetic algorithm

Knowledge-Based Systems - Tập 110 - Trang 86-97 - 2016
Md. Nasim Adnan1, Md Zahidul Islam1
1School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abellan, 2013, Ensembles of decision trees based on imprecise probabilities and uncertainty measures, Inf. Fusion, 14, 423, 10.1016/j.inffus.2012.03.003

Amasyali, 2014, Classifier ensembles with the extended space forest, IEEE Trans. Knowl. Data Eng., 16, 145

Arlot, 2010, A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40, 10.1214/09-SS054

Beg, 2016, Genetic algorithm with novel crossover, selection and health check for clustering, 575

Bernard, 2012, Dynamic random forests, Pattern Recognit. Lett., 33, 1580, 10.1016/j.patrec.2012.04.003

Bernard, 2008, Forest-RK: a new random forest induction method, 5227, 430

Bhatnagar, 2014, Accuracy-diversity based pruning of classifier ensembles, Progr. Artif. Intell., 2, 97, 10.1007/s13748-014-0042-9

Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Breiman, 1985

Daniel, 2012

Demsar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1

Dietterich, 2000, Ensemble methods in machine learning Published, 1, 10.1007/3-540-45014-9_1

Geurts, 2006, Extremely randomized trees, Mach. Learn., 63, 3, 10.1007/s10994-006-6226-1

Gopika, 2014, A novel approach on ensemble classifiers with fast rotation forest algorithm, Int. J. Innovative Res. Comput. Commun. Eng., 2, 5380

Han, 2006

Ho, 1998, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell., 20, 832, 10.1109/34.709601

Holland, 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press

AccuWeather Inc., 2015

Kim, 2008, Classifier ensemble selection using hybrid genetic algorithms, Pattern Recognit. Lett., 29, 796, 10.1016/j.patrec.2007.12.013

Kozak, 2015, Multiple boosting in the ant colony decision forest meta-classifier, Knowl. Based Syst., 75, 141, 10.1016/j.knosys.2014.11.027

Kuncheva, 2005, Using diversity measures for generating error-correcting output codes in classifier ensembles, Pattern Recognit. Lett., 26, 83, 10.1016/j.patrec.2004.08.019

Kuncheva, 2003, Measures of diversity in classifier ensembles and their relationship with ensemble accuracy, Mach. Learn., 51, 181, 10.1023/A:1022859003006

Kurgan, 2004, Caim discretization algorithm, IEEE Trans. Knowl. Data Eng., 16, 145, 10.1109/TKDE.2004.1269594

Li, 2003, Ensembles of cascading trees, 585

Lichman, 2013

Liu, 2011, Automatic clustering using genetic algorithms, Appl. Math. Comput., 218, 1267, 10.1016/j.amc.2011.06.007

Lobato, 2013, How large should ensembles of classifiers be?, Pattern Recognit., 46, 1323, 10.1016/j.patcog.2012.10.021

Lu, 2010, Ensemble pruning via individual contribution ordering, 871

Margineantu, 1997, Pruning adaptive boosting, 211

Mason, 1998

Munoz, 2009, An analysis of ensemble pruning techniques based on ordered aggregation, IEEE Trans. Pattern Anal. Mach. Intell., 31, 245, 10.1109/TPAMI.2008.78

Munoz, 2003, Aggregation ordering in bagging, 258

Munoz, 2006, Pruning in ordered bagging ensembles, 609

Munoz, 2006, Using boosting to prune bagging ensembles, Pattern Recognit. Lett., 28, 156, 10.1016/j.patrec.2006.06.018

Partalas, 2008, Focused ensemble selection: a diversity-based method for greedy ensemble selection, 117

Polikar, 2006, Ensemble based systems in decision making, IEEE Circ. Syst. Mag., 6, 21, 10.1109/MCAS.2006.1688199

Rahman, 2014, A hybrid clustering technique combining a novel genetic algorithm with k-means, Knowl. Based Syst., 71, 345, 10.1016/j.knosys.2014.08.011

Rodriguez, 2006, Rotation forest: a new classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1619, 10.1109/TPAMI.2006.211

Ruta, 2005, Classifier selection for majority voting, Inf. Fusion, 6, 63, 10.1016/j.inffus.2004.04.008

Shipp, 2002, Relationships between combination methods and measures of diversity in combining classifiers, Inf. Fusion, 3, 135, 10.1016/S1566-2535(02)00051-9

Tamon, 1997, On the boosting pruning problem, 404

Tan, 2006

Tang, 2006, An analysis of diversity measures, Mach. Learn., 65, 247, 10.1007/s10994-006-9449-2

Triola, 2001

Whitley, 1994, A genetic algorithm tutorial, Stat. Comput., 4, 65, 10.1007/BF00175354

Wilcoxon, 1945, Individual comparison by ranking methods, Biometrics, 1, 80, 10.2307/3001968

Zeng, 2014, Constructing better classifier ensemble based on weighted accuracy and diversity measure, Sci. World J., 2014, 1, 10.1155/2014/594579

Zhang, 2016, Three-way recommender systems based on random forests, Knowl. Based Syst., 91, 275, 10.1016/j.knosys.2015.06.019

Zhang, 2014, Random forests with ensemble of feature spaces, Pattern Recognit., 47, 3429, 10.1016/j.patcog.2014.04.001

Zhang, 2006, Ensemble pruning via semi-definite programming, J. Mach. Learn. Res., 7, 1315

Zhou, 2016, Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features, Knowl. Based Syst., 95, 1, 10.1016/j.knosys.2015.11.010

Zhou, 2003, Selective ensemble of decision trees, 476