Rapid consolidation of nanocrystalline NbSi2-Si3N4 composites by pulsed current activated combustion synthesis

Metals and Materials International - Tập 16 - Trang 393-398 - 2010
In-Yong Ko1, Jeong-Hwan Park1,2, Kee-Seok Nam3, In-Jin Shon1,2
1Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University, Jeonbuk, Korea
2Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University, Jeonbuk, Korea
3Korea Institute of Materials Science, Gyeongnam, Korea

Tóm tắt

A dense nanostructured 4NbSi2-Si3N4 composite was synthesized by a Pulsed Current Activated Combustion Synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of NbN and Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. A highly dense 4NbSi2-Si3N4 composite with a relative density of up to 98 % was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average hardness and fracture toughness values obtained were 700 kg/mm2 and 3.5 MPa·m1/2, respectively

Tài liệu tham khảo

M. S. El-Eskandarany, J. Alloy. Compd. 305, 225 (2000). L. Fu, L. H. Cao, and Y. S. Fan, Scripta mater. 44, 1061 (2001). K. Niihara and A. Nikahira, Advanced Structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990). S. Berger, R. Porat, and R. Rosen, Prog. Mater. 42, 311 (1997). Z. Fang and J. W. Eason, Int. J. Refract. Met. H. 13, 297 (1995). A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004). I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Int. 14, 593 (2008). M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, Int. J. of Refractory Met. & Hard Mater. 20, 41 (2002). I. J. Shon, S. C. Kim, B. S. Lee, B. R. Kim, Electronic Materials Letters 5, 19 (2009). I. K. Jeong, J. M. Doh, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater 46, 223 (2004). D. Vojtech, B. Barbora, and T. Kubatik, Mater. Sci. Eng. A 361, 50 (2003). R. Rosenkranz, G. Frommeyer, and W. Smarsly, Mater. Sci. Eng. A 152, 288 (1992). W. Y. Yang, H. Iwakuro, H. Yagi, T. Kuroda, and S. Nakamura, Jpn. J. Appl. Phys. 23, 1560 (1984). G. Sauthoff, Intermetallics, VCH Publishers, New York, (1995). Y. Ohya, M. J. Hoffmann, and G. Petzow, J. Mater. Sci. Lett. 12, 149 (1993). J. Qian, L. L. Daemen, and Y. Zhao, Diam. Relat. Mater. 14, 1669 (2005). B. W. Lin and T. Iseki, Br. Ceram. Trans. J. 91, 1 (1992). Y. Ohya, M. J. Hoffmann, and G. Petzow, J. Am. Ceram. Soc. 75, 2479 (1992). S. K. Bhaumik, C. Divakar, A. K. Singh, and G. S. Upadhyaya, J. Mater. Sci. Eng. A 279, 275 (2000). D. K. Jang and R. Abbaschian, Kor. J. Mater. Res. 9, 92 (1999). H. Zhang, P. Chen, M. Wang, and X. Liu, Rare Metals 21, 304 (2002). D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloy. Compd. 395, 174 (2005). W. Dressler and R. Riedel, Int. J. Refract. Met. H. 15, 13 (1997). S. P. Taguchi and S. Ribeiro, J. Mater. Process. Tech. 147, 336 (2004). T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, Intermetallics 9, 621 (2001). C. Suryanarayana and M. G. Norton, X-ray Diffraction a Practical Approach, Plenum Press, New York, (1998). N. Koichi, Ceramics 20, 1218 (1985). J. Guille and L. Matini, J. Mater. Sci. Lett. 7, 952 (1988).