Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensional numerical approach

Engineering Geology - Tập 289 - Trang 106170 - 2021
Gaetano Falcone1, Gianluca Acunzo1, Amerigo Mendicelli1, Federico Mori1, Giuseppe Naso2, Edoardo Peronace1, Attilio Porchia1, Gino Romagnoli1, Emanuele Tarquini1,3, Massimiliano Moscatelli1
1CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Rome, Monterotondo, Italy
2Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC), via Vitorchiano 2, 00189 Rome, Italy
3Now at Indra, Via Umberto Saba, 11, 00144 Rome, Italy

Tài liệu tham khảo

Akkar, 2014, Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East, Bull. Earthq. Eng., 12, 359, 10.1007/s10518-013-9461-4 Allen, 2007 Amorosi, 2014, Numerical prediction of tunnel performance during centrifuge dynamic tests, Acta Geotech., 9, 581, 10.1007/s11440-013-0295-7 Antoniou, 2020, Scaling laws for shaking table testing of reinforced concrete tunnels accounting for post-cracking lining response, Tunn. Undergr. Space Technol., 101, 103353, 10.1016/j.tust.2020.103353 ASTM, 1985, 395 Barani, 2020, Incorporating results from seismic microzonation into probabilistic seismic hazard analysis: an example in western Liguria (Italy), Eng. Geol., 267, 105479, 10.1016/j.enggeo.2020.105479 Bindi, 2011, Ground motion prediction equations derived from the Italian strong motion database, Bull. Earthq. Eng., 9, 1899, 10.1007/s10518-011-9313-z Bindi, 2014, Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset, Bull. Earthq. Eng., 12, 391, 10.1007/s10518-013-9525-5 Bommer, 1999, The effective duration of earthquake strong motion, J. Earthq. Eng., 3, 127, 10.1080/13632469909350343 Bouckovalas, 2005, Numerical evaluation of slope topography effects on seismic ground motion, Soil Dyn. Earthq. Eng., 25, 547, 10.1016/j.soildyn.2004.11.008 Brando, 2020, Site effects and damage scenarios: the case study of two historic centers following the 2016 Central Italy earthquake, Eng. Geol., 272, 105647, 10.1016/j.enggeo.2020.105647 Callisto, 2013, Soil–structure interaction for the seismic design of the Messina Strait Bridge, Soil Dyn. Earthq. Eng., 52, 103, 10.1016/j.soildyn.2013.05.005 Catalano, 2019, 948 Chi-Miranda, 2017, A numerical comparison of random vibration theory and time histories based methods for equivalent-linear site response analyses, Int. J. Geo-Eng., 8, 1, 10.1186/s40703-017-0059-6 Commissione Tecnica MS Darendeli, 2001 De Risi, 2019, Seismic risk at urban scale: the role of site response analysis, Soil Dyn. Earthq. Eng., 123, 320, 10.1016/j.soildyn.2019.04.011 DPC, Dipartimento della Protezione Civile Elia, 2011, Numerical prediction of the dynamic behavior of two Earth dams in Italy using a fully coupled nonlinear approach, Int. J. Geomech., 11, 504, 10.1061/(ASCE)GM.1943-5622.0000043 Fabozzi, 2020, Stochastic approach to study the site response in presence of shear wave velocity inversion: Application to seismic microzonation studies in Italy, Eng. Geol., 280, 105914, 10.1016/j.enggeo.2020.105914 Falcone, 2018, Site response analysis of an urban area: a multi-dimensional and non-linear approach, Soil Dyn. Earthq. Eng., 109, 33, 10.1016/j.soildyn.2018.02.026 Falcone, 2019, Quantifying local seismic amplification from regional charts and site specific numerical analyses: a case study, Bull. Earthq. Eng., 1 Falcone, 2020, A simplified analysis of the total seismic hazard in Italy, Eng. Geol., 267, 105511, 10.1016/j.enggeo.2020.105511 Falcone, 2020, Effect of bedrock stiffness and thickness on numerical simulation of seismic site response. Italian case studies, Soil Dyn. Earthq. Eng., 139, 106361, 10.1016/j.soildyn.2020.106361 Fontana, 2020, Assessing seismic resilience of school educational sector. An attempt to establish the initial conditions in Calabria Region, Southern Italy, Int. J. Disaster Risk Reduction, 51, 101936, 10.1016/j.ijdrr.2020.101936 Galli, 2008, The “taranta” effect of the 1743 earthquake in Salento (Apulia, southern Italy), Boll. Geofis. Teor. Appl., 49, 177 Gallipoli, 2020, Evaluation of soil-building resonance effect in the urban area of the city of Matera (Italy), Eng. Geol., 272, 105645, 10.1016/j.enggeo.2020.105645 Giallini, 2020, Evaluation of complex site effects through experimental methods and numerical modelling: the case history of Arquata del Tronto, Central Italy, Eng. Geol., 272, 105646, 10.1016/j.enggeo.2020.105646 Guzel, 2020, Effect of soil variability on nonlinear site response predictions: Application to the Lotung site, Comput. Geotech., 121, 103444, 10.1016/j.compgeo.2020.103444 Hailemikael, 2020, Guest editorial: seismic microzonation of Central Italy following the 2016–2017 seismic sequence, Bull. Earthq. Eng. He, 2020, Seismic response of the Lengzhuguan slope caused by topographic and geological effects, Eng. Geol., 265, 10.1016/j.enggeo.2019.105431 Huber, 2015, Risk-based characterisation of an urban building site, Georisk, 9, 49 ItBC, 2018 Iwahashi, 2018, Global terrain classification using 280 m DEMs: segmentation, clustering, and reclassification, Prog. Earth Planet. Sci., 5, 1, 10.1186/s40645-017-0157-2 Kassas, 2020, Numerical modelling of a structure with shallow strip foundation during earthquake-induced liquefaction, Géotechnique, 1 Kolli, 2021, On the use of duration in random vibration theory (RVT) based ground motion prediction: a comparative study, Bull. Earthq. Eng., 1 Kotha, 2020, A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe, Bull. Earthq. Eng., 18, 4091, 10.1007/s10518-020-00869-1 Kottke Kramer, 1996 Lai, 2020, An inter-disciplinary and multi-scale approach to assess the spatial variability of ground motion for seismic microzonation: the case study of Cavezzo municipality in Northern Italy, Eng. Geol., 274, 105722, 10.1016/j.enggeo.2020.105722 Lanzo, 2009, Numerical modeling of site effects at San Giuliano di Puglia (Southern Italy) during the 2002 Molise seismic sequence, J. Geotech. Geoenviron., 135, 1295, 10.1061/(ASCE)GT.1943-5606.0000055 Lanzo, 2011, Site response studies and seismic microzoning in the Middle Aterno valley (L’Aquila, Central Italy), Bull. Earthq. Eng., 9, 1417, 10.1007/s10518-011-9278-y Lloyd, 1957 Luo, 2020, Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations, Eng. Geol., 271, 105607, 10.1016/j.enggeo.2020.105607 Maufroy, 2015, Earthquake Ground Motion in the Mygdonian Basin, Greece: the E2VP Verification and Validation of 3D Numerical simulation up to 4 Hz, Bull. Seismol. Soc. Am., 105, 1398, 10.1785/0120140228 Meletti Moczo, 2018, Key structural parameters affecting earthquake ground motion in 2D and 3D sedimentary structures, Bull. Earthq. Eng., 16, 2421, 10.1007/s10518-018-0345-5 Montaldo Mori, 2019, HSM: a synthetic damage-constrained seismic hazard parameter, Bull. Earthq. Eng., 1 Mori, 2020, Seismic emergency system evaluation: the role of seismic hazard and local effects, Eng. Geol., 270, 105587, 10.1016/j.enggeo.2020.105587 Mori, 2020, A new Vs30 map for Italy based on the seismic microzonation dataset, Eng. Geol., 275, 105745, 10.1016/j.enggeo.2020.105745 Moscatelli, 2020, Physical stratigraphy and geotechnical properties controlling the local seismic response in explosive volcanic settings: the Stracciacappa maar (Central Italy), Bull. Eng. Geol. Environ., 1 Nappi, 2017, The environmental effects of the 1743 Salento earthquake (Apulia, Southern Italy): a contribution to seismic hazard assessment of the Salento Peninsula, Nat. Hazards, 86, S295, 10.1007/s11069-016-2548-x Pagliaroli, 2014, Seismic microzonation of the central archaeological area of Rome: results and uncertainties, Bull. Earthq. Eng., 12, 1405, 10.1007/s10518-013-9480-1 Panzera, 2018, Correlation between earthquake damage and seismic site effects: the study case of Lentini and Carlentini, Italy, Eng. Geol., 240, 149, 10.1016/j.enggeo.2018.04.014 Panzera, 2019, Integrated use of ambient vibrations and geological methods for seismic microzonation, J. Appl. Geophys., 170, 103820, 10.1016/j.jappgeo.2019.103820 Pitilakis, 1999, Geotechnical and geophysical description of euro-seistest, using field, laboratory tests and moderate strong motion recordings, J. Earthq. Eng., 3, 381, 10.1080/13632469909350352 Rathje, 2006, Site-specific validation of random vibration theory-based seismic site Response Analysis, J. Geotech. Geoenviron., 132, 911, 10.1061/(ASCE)1090-0241(2006)132:7(911) Régnier, 2016, International benchmark on numerical simulations for 1D, nonlinear site response (PRENOLIN): verification phase based on canonical cases, Bull. Seismol. Soc. Am., 106, 2112, 10.1785/0120150284 Régnier, 2018, PRENOLIN: International benchmark on 1D nonlinear site-response analysis—validation phase exercise, Bull. Seismol. Soc. Am., 108, 876 Rollins, 1998, Shear modulus and damping relationships for gravels, J. Geotech. Geoenviron., 124, 396, 10.1061/(ASCE)1090-0241(1998)124:5(396) Rollins, 2020, Simplified equations for Shear-modulus degradation and damping of Gravels, J. Geotech. Geoenviron., 146, 10.1061/(ASCE)GT.1943-5606.0002300 Salmon, 1992 Santucci de Magistris, 2014, Lessons learned from two case histories of seismic microzonation in Italy, Nat. Hazards, 74, 2005, 10.1007/s11069-014-1281-6 Seed Shreyasvi, 2019, Local site effect incorporation in probabilistic seismic hazard analysis – a case study from southern peninsular India, an intraplate region, Soil Dyn. Earthq. Eng., 123, 381, 10.1016/j.soildyn.2019.04.035 SM Working Group Vucetic, 1991, Effect of Soil Plasticity on Cyclic Response, J. Geotech. Eng., 117, 89, 10.1061/(ASCE)0733-9410(1991)117:1(89) Wu, 2009, Stepwise multiple quantile regression estimation using non-crossing constraints, Stat. Interf.