Quantitative determination of chlorides by molecular laser-induced breakdown spectroscopy
Tài liệu tham khảo
Wilsch, 2005, Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy, Constr. Build. Mater., 19, 724, 10.1016/j.conbuildmat.2005.06.001
Wilsch, 2014, 611
Eto, 2014, Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 101, 245, 10.1016/j.sab.2014.09.004
Millar, 2018, Chlorine determination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS)–a review and validation, Spectrochim. Acta B At. Spectrosc., 147, 1, 10.1016/j.sab.2018.05.015
Gottlieb, 2017, 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm, Spectrochim. Acta B At. Spectrosc., 134, 58, 10.1016/j.sab.2017.06.005
Weritz, 2006, Effect of heterogeneity on the quantitative determination of trace elements in concrete, Anal. Bioanal. Chem., 385, 248, 10.1007/s00216-006-0362-0
DIN EN 206:2017-01, 2017
Kramida, 2015
Gottlieb, 2017, Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics, Spectrochim. Acta B At. Spectrosc., 132, 43, 10.1016/j.sab.2017.04.001
Labutin, 2014, Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 99, 94, 10.1016/j.sab.2014.06.021
Omenetto, 2016, Feasibility of atomic and molecular laser induced breakdown spectroscopy (LIBS) to in situ determination of chlorine in concrete
Parigger, 2013, Atomic and molecular emissions in laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 79-80, 4, 10.1016/j.sab.2012.11.012
Glaus, 2015, Insight into the Formation of Molecular Species in Laser-Induced Plasma of Isotopically Labeled Organic Samples, Anal. Chem., 87, 10131, 10.1021/acs.analchem.5b02926
De Giacomo, 2017, Laser-induced plasma emission: from atomic to molecular spectra, J. Phys. D. Appl. Phys., 50, 183002, 10.1088/1361-6463/aa6585
Dietz, 2018, Diagnostics and simulations of molecular formation in laser-induced plasmas, Spectrochim. Acta B At. Spectrosc., 148, 51, 10.1016/j.sab.2018.06.007
Gaft, 2014, Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air, Spectrochim. Acta B At. Spectrosc., 98, 39, 10.1016/j.sab.2014.05.011
Rother, 2017, Molecular laser-induced breakdown spectroscopy for elemental analysis, Tech. Mess., 84, 23, 10.1515/teme-2016-0032
Bechlin, 2017, Determination of chlorine in cement via CaCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis, Microchem. J., 132, 130, 10.1016/j.microc.2017.01.019
Pearse, 1950
Marks, 1982, The orange arc bands of CaO. Analysis of a D, d1, 3Δ − a3Π system, J. Chem. Phys., 76, 4689, 10.1063/1.442784
DIN EN 197-1:2011-11, 2011
Bai, 2014, Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air, Spectrochim. Acta B At. Spectrosc., 99, 193, 10.1016/j.sab.2014.07.004
DIN 32645:2008-11, 2008
Gottlieb, 2018, Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 142, 74, 10.1016/j.sab.2018.02.004
Beresko, 2014, Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 99, 20, 10.1016/j.sab.2014.06.004