Dislocation-assisted particle dissolution: A new hypothesis for abnormal growth of Goss grains in grain-oriented electrical steels

Acta Materialia - Tập 258 - Trang 119170 - 2023
Ceren Yilmaz1, Marvin Poul2, Ludger Lahn3, Dierk Raabe1, Stefan Zaefferer1
1Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
2Department of Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
3Thyssenkrupp Electrical Steel GmbH, Kurt-Schumacher-Straße 95, Gelsenkirchen 45881, Germany

Tài liệu tham khảo

Tomida, 2003, Fine-grained doubly oriented silicon steel sheets and mechanism of cube texture development, Mater. Trans., 44, 1106, 10.2320/matertrans.44.1106 Frommert, 2008, Texture measurement of grain-oriented electrical steels after secondary recrystallization, J. Magn. Magn. Mater., 320, e657, 10.1016/j.jmmm.2008.04.102 Pease, 1981, SEM study of origin of goss texture in Fe-3. 25Si, Met. Sci., 15, 203, 10.1179/030634581790426642 Hillert, 1965, On the theory of normal and abnormal grain growth, Acta Metall., 13, 227, 10.1016/0001-6160(65)90200-2 May, 1958, Secondary Recrystallization in Silicon Iron, Trans. Met. Soc. AIME, 212, 769 Homma, 2003, Orientation dependence of secondary recrystallisation in silicon–iron, Acta Mater., 51, 3795, 10.1016/S1359-6454(03)00193-9 Takahashi, 1994, Recent development of grain oriented silicon steels, Tetsu To Hagane, 80, N59, 10.2355/tetsutohagane1955.80.2_N59 Rajmohan, 1999, Goss texture development in Fe–Si steels, Textures Microstruct., 32, 10.1155/TSM.32.153 Hayakawa, 2002, Orientation relationship between primary and secondary recrystallized texture in electrical steel, Acta Mater., 50, 4527, 10.1016/S1359-6454(02)00271-9 Hayakawa, 1997, A new model of Goss texture development during secondary recrystallization of electrical steel, Acta Mater., 45, 4713, 10.1016/S1359-6454(97)00111-0 Zaefferer, 2005, The goss texture formation in silicon steels – growth selection or oriented nucleation?, Solid State Phenomena, 105, 29, 10.4028/www.scientific.net/SSP.105.29 Lin, 1996, Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3% Si alloy, Acta Mater., 44, 4677, 10.1016/S1359-6454(96)00140-1 Harase, 1991, Texture evolution in the presence of precipitates in Fe−3% Si alloy, Acta Metall. Mater., 39, 763, 10.1016/0956-7151(91)90276-7 Shimizu, 1989, Coincidence grain boundary and texture evolution in Fe-3%Si, Acta Metall., 37, 1241, 10.1016/0001-6160(89)90118-1 Harase, 1992, Coincidence grain boundary and (100)[011]secondary recrystallization in Fe-3% Si, Acta Metall. Mater., 40, 1101, 10.1016/0956-7151(92)90088-V Raabe, 1992, Selective particle drag during primary recrystallization of Fe-Cr alloys, Scr. Metall. Mater., 26, 19, 10.1016/0956-716X(92)90361-H Nakayama, 1992, Modeling of secondary recrystallization in 3% silicon steels, Mater. Sci. Forum, 94-96, 413, 10.4028/www.scientific.net/MSF.94-96.413 Ushigami, 1991, Dynamic study of secondary recrystallization of 3% Si-Fe by synchrotron x-radiation topography, J. Mater. Eng., 13, 113, 10.1007/BF02995815 Dorner, 2006, Overview of microstructure and microtexture development in grain-oriented silicon steel, J. Magn. Magn. Mater., 304, 183, 10.1016/j.jmmm.2006.02.116 Chen, 2003, Effects of topology on abnormal grain growth in silicon steel, Acta Mater., 51, 1755, 10.1016/S1359-6454(02)00574-8 Inokuti, 1987, Computer color mapping of configuration of goss grains after an intermediate annealing in grain oriented silicon steel, Trans. Iron Steel Inst. Jpn., 27, 139, 10.2355/isijinternational1966.27.139 Matsuo, 1989, Texture control in the production of grain oriented silicon steels, ISIJ Int., 29, 809, 10.2355/isijinternational.29.809 Nielsen, 1954, Mechanism for the origin of recrystallization nuclei, J. Met., 6, 1084 Park, 2013, Parallel three-dimensional Monte Carlo simulations for effects of precipitates and sub-boundaries on abnormal grain growth of Goss grains in Fe–3%Si steel, Philos. Mag., 93, 4198, 10.1080/14786435.2013.822645 Ko, 2010, Monte-Carlo simulation of goss abnormal grain growth in Fe-3%Si steel by sub-boundary enhanced solid-state wetting, Acta Mater., 58, 4414, 10.1016/j.actamat.2010.04.038 Hayakawa, 2017, Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel, Sci. Technol. Adv. Mater., 18, 480, 10.1080/14686996.2017.1341277 Böttcher, 1993, Influence of subsurface layers on texture and microstructure development in RGO electrical steel, Acta Metall. Mater., 41, 2503, 10.1016/0956-7151(93)90331-L Mishra, 1984, On the development of the goss texture in iron-3% silicon, Acta Metall., 32, 2185, 10.1016/0001-6160(84)90161-5 Dorner, 2007, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Mater., 55, 2519, 10.1016/j.actamat.2006.11.048 Zaefferer, 2014, Theory and application of electron channelling contrast imaging under controlled diffraction conditions, Acta Mater., 75, 20, 10.1016/j.actamat.2014.04.018 Thompson, 2007, In situ site-specific specimen preparation for atom probe tomography, Ultramicroscopy, 107, 131, 10.1016/j.ultramic.2006.06.008 Hans, 2019, On the chemical composition of TiAlN thin films - Comparison of ion beam analysis and laser-assisted atom probe tomography with varying laser pulse energy, Thin Solid Films, 688, 10.1016/j.tsf.2019.04.026 Zanuttini, 2018, Dissociation of GaN 2+ and AlN 2+ in APT: analysis of experimental measurements, J. Chem. Phys., 149, 10.1063/1.5037010 Y. Ushigami, T. Kubota, K. Murakami, ICOTOM-12, 1999, pp. 981–990. Vítek, 1968, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag. A J. Theor. Exp. Appl. Phys., 18, 773 Smallman, 2014, 121 Hull, 2011 Humphreys, 2004 Zhou, 2021, The hidden structure dependence of the chemical life of dislocations, Sci. Adv., 7, eabf0563, 10.1126/sciadv.abf0563 Kuzmina, 2015, Linear complexions: confined chemical and structural states at dislocations, Science, 349, 1080, 10.1126/science.aab2633 Aboulfadl, 2015, Dynamic strain aging studied at the atomic scale, Acta Mater., 86, 34, 10.1016/j.actamat.2014.12.028 Suzuki, 2001, Influence of metallurgical factors on secondary recrystallization of silicon steel, Mater. Trans., 42, 994, 10.2320/matertrans.42.994 Bacroix, 2019, Evolution of recrystallization texture in non-oriented electrical steels during final annealing – influence of shear stress after cold rolling, J. Phys. Conf. Ser., 1270, 10.1088/1742-6596/1270/1/012007 Bunge, 1986, The development of deformation textures described by an orientation flow field, Textures Microstruct., 6, 181, 10.1155/TSM.6.181 Raabe, 2002, Theory of orientation gradients in plastically strained crystals, Acta Mater., 50, 421, 10.1016/S1359-6454(01)00323-8 Raabe, 1992, Annealing textures of BCC metals, Scr. Metall. Mater., 27, 1533, 10.1016/0956-716X(92)90140-A Raabe, 1994, Rolling and annealing textures of BCC metals, Mater. Sci. Forum, 157-162, 597, 10.4028/www.scientific.net/MSF.157-162.597 H. Gleiter, S. Mahajan, K.J. Bachmann, The generation of lattice dislocations by migrating boundaries, 28 (1980) 1603–1610. Jelinek, 2012, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B, 85, 10.1103/PhysRevB.85.245102 Cheng, 2018, Aimsgb: an algorithm and open-source python library to generate periodic grain boundary structures, Comput. Mater. Sci., 155, 92, 10.1016/j.commatsci.2018.08.029 Lejček, 2010 Hwang, 1998, Simulation of the effect of anisotropic grain boundary mobility and energy on abnormal grain growth, J. Mater. Sci., 33, 5625, 10.1023/A:1004472400615 Park, 2010, Sub-boundaries in abnormally growing Goss grains in Fe–3% Si steel, Scr. Mater., 62, 376, 10.1016/j.scriptamat.2009.11.025 Na, 2018, Comparison of three-dimensional morphologies of abnormally growing grains between Monte Carlo simulations and experiments of Fe-3% Si steel, Mater. Charact., 144, 239, 10.1016/j.matchar.2018.07.017 Korte-Kerzel, 2022, Defect phases–thermodynamics and impact on material properties, Int. Mater. Rev., 67, 89, 10.1080/09506608.2021.1930734 Frolov, 2012, Thermodynamics of coherent interfaces under mechanical stresses. I. Theory, Phys. Rev. B, 85 Frolov, 2015, Phases, phase equilibria, and phase rules in low-dimensional systems, J. Chem. Phys., 143, 10.1063/1.4927414