Water wave propagation in unbounded domains. Part II: Numerical methods for fractional PDEs

Journal of Computational Physics - Tập 275 - Trang 443-458 - 2014
G.I. Jennings1, David K. Prigge1, Sean Carney1, Smadar Karni1, J. Rauch1, Rémi Abgrall2
1Department of Mathematics, University of Michigan, United States#TAB#
2Institüt für Mathematik, Universität Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Betancourt, 2011, On nonlocal conservation laws modeling sedimentation, Nonlinearity, 24, 855, 10.1088/0951-7715/24/3/008

Chae, 2005, Finite time singularities in a 1D model of the quasi-geostrophic equation, Adv. Math., 194, 203, 10.1016/j.aim.2004.06.004

Azerad

Almendral, 2007, Accurate evaluation of European and American options under the CGMY process, SIAM J. Sci. Comput., 93, 10.1137/050637613

Briani, 2004, Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory, Numer. Math., 98, 607, 10.1007/s00211-004-0530-0

D'Halluin, 2005, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25, 87, 10.1093/imanum/drh011

Matache, 2005, Fast numerical solution of parabolic integrodifferential equations with applications in finance, SIAM J. Sci. Comput., 27, 369, 10.1137/030602617

Momani, 2008, Numerical solutions of the space–time fractional advection–dispersion equation, Numer. Methods Partial Differ. Equ., 24, 1416, 10.1002/num.20324

Yang, 2010, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200, 10.1016/j.apm.2009.04.006

Herrmann, 2011

Oldham, 1974

Podlubny, 1999

Ortigueira, 2011

Cont, 2005, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J. Numer. Anal., 4, 1596, 10.1137/S0036142903436186

Briani, 2006, Asymptotic high-order schemes for integro-differential problems arising in markets with jumps, Commun. Math. Sci., 4, 81, 10.4310/CMS.2006.v4.n1.a3

Ciesielski, 2006, Numerical treatement of an initial-boundary value problem for fractional partial differential equations, Signal Process., 86, 2619, 10.1016/j.sigpro.2006.02.009

Lynch, 2003, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192, 406, 10.1016/j.jcp.2003.07.008

Meerschaert, 2006, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249, 10.1016/j.jcp.2005.05.017

Choi, 2010, Numerical solutions for space fractional dispersion equations with nonlinear source terms, Bull. Korean Math. Soc., 47, 1225, 10.4134/BKMS.2010.47.6.1225

Ding, 2010, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math., 233, 1905, 10.1016/j.cam.2009.09.027

Li, 2011, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230, 3362, 10.1016/j.jcp.2011.01.030

Wu, 1997, Well-posedness in Sobolev spaces of the full water wave problem in 2D, Invent. Math., 130, 39, 10.1007/s002220050177

Jennings, 2012

Jennings, 2014, Water wave propagation in unbounded domains. Part I: nonreflecting boundaries, J. Comput. Phys.

LeVeque, 2007

Iserles, 1983, The optimal accuracy of difference schemes, Trans. Am. Math. Soc., 277, 779, 10.1090/S0002-9947-1983-0694388-9

Carney, 2013

Harten, 1987, Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231, 10.1016/0021-9991(87)90031-3