CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications
Tài liệu tham khảo
Komor, 2017, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 168, 20, 10.1016/j.cell.2016.10.044
Sternberg, 2015, Expanding the biologist’s toolkit with CRISPR-Cas9, Mol. Cell, 58, 568, 10.1016/j.molcel.2015.02.032
Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010
Song, 2017, Optimizing the DNA donor template for homology-directed repair of double-strand breaks, Mol. Ther. Nucleic Acids, 7, 53, 10.1016/j.omtn.2017.02.006
Bollen, 2018, How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing, Nucleic Acids Res., 46, 6435, 10.1093/nar/gky571
Savic, 2018, Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair, eLife, 7, 10.7554/eLife.33761
Hess, 2017, Methods and applications of CRISPR-mediated base editing in eukaryotic genomes, Mol. Cell, 68, 26, 10.1016/j.molcel.2017.09.029
Sun, 2016, Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase, Mol. Plant, 9, 628, 10.1016/j.molp.2016.01.001
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Nishida, 2016, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, 353, 10.1126/science.aaf8729
Gaudelli, 2017, Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644
Komor, 2017, Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity, Sci. Adv., 3, 10.1126/sciadv.aao4774
Eid, 2018, CRISPR base editors: genome editing without double-stranded breaks, Biochem. J., 475, 1955, 10.1042/BCJ20170793
Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1
Li, 2018, Base editing with a Cpf1–cytidine deaminase fusion, Nat. Biotechnol., 36, 324, 10.1038/nbt.4102
Rees, 2017, Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery, Nat. Commun., 8, 15790, 10.1038/ncomms15790
Kim, 2017, Genome-wide target specificities of CRISPR RNA-guided programmable deaminases, Nat. Biotechnol., 35, 475, 10.1038/nbt.3852
Lin, 2014, Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery, eLife, 3, 10.7554/eLife.04766
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Lindahl, 2000, Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair, Mutat. Res., 462, 129, 10.1016/S1383-5742(00)00024-7
Chen, 2014, Repair of naturally occurring mismatches can induce mutations in flanking DNA, eLife, 3, 10.7554/eLife.02001
Alseth, 2014, Inosine in DNA and RNA, Curr. Opin. Genet. Dev., 26, 116, 10.1016/j.gde.2014.07.008
Liu, 2018, Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing, Nat. Commun., 9, 2338, 10.1038/s41467-018-04768-7
Ryu, 2018, Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy, Nat. Biotechnol., 36, 536, 10.1038/nbt.4148
Lee, 2018, Targeting fidelity of adenine and cytosine base editors in mouse embryos, Nat. Commun., 9, 4804, 10.1038/s41467-018-07322-7
Hua, 2018, Precise A: T. to G.C. base editing in the rice genome, Mol. Plant, 11, 627, 10.1016/j.molp.2018.02.007
Li, 2018, Expanded base editing in rice and wheat using a Cas9–adenosine deaminase fusion, Genome Biol., 19, 59, 10.1186/s13059-018-1443-z
Yan, 2018, Highly efficient A: T. to G.C. base editing by Cas9n-guided tRNA adenosine deaminase in rice, Mol. Plant, 11, 631, 10.1016/j.molp.2018.02.008
Zuo, 2019, Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos, Science, 10.1126/science.aav9973
Jin, 2019, Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice, Science, 10.1126/science.aaw7166
Kim, 2017, Increasing the genome-targeting scope and precision of base editing with engineered Cas9–cytidine deaminase fusions, Nat. Biotechnol., 35, 371, 10.1038/nbt.3803
Hua, 2019, Expanding the base editing scope in rice by using Cas9 variants, Plant Biotechnol. J., 17, 499, 10.1111/pbi.12993
Hu, 2018, Evolved Cas9 variants with broad PAM compatibility and high DNA specificity, Nature, 556, 57, 10.1038/nature26155
Nishimasu, 2018, Engineered CRISPR-Cas9 nuclease with expanded targeting space, Science, 361, 1259, 10.1126/science.aas9129
Chatterjee, 2018, Minimal PAM specificity of a highly similar SpCas9 ortholog, Sci. Adv., 4, 10.1126/sciadv.aau0766
Jakimo, 2018, A Cas9 with complete PAM recognition for adenine dinucleotides, bioRxiv
Villiger, 2018, Treatment of a metabolic liver disease by in vivo genome base editing in adult mice, Nat. Med., 24, 1519, 10.1038/s41591-018-0209-1
Yang, 2016, Engineering and optimising deaminase fusions for genome editing, Nat. Commun., 7, 13330, 10.1038/ncomms13330
Jiang, 2018, BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity, Cell Res., 28, 855, 10.1038/s41422-018-0052-4
Zong, 2018, Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A, Nat. Biotechnol., 36, 950, 10.1038/nbt.4261
Wang, 2018, Efficient base editing in methylated regions with a human APOBEC3A–Cas9 fusion, Nat. Biotechnol., 36, 946, 10.1038/nbt.4198
Gehrke, 2018, An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities, Nat. Biotechnol., 36, 977, 10.1038/nbt.4199
Tan, 2019, Engineering of high-precision base editors for site-specific single nucleotide replacement, Nat. Commun., 10
Lu, 2017, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system, Mol. Plant, 10, 523, 10.1016/j.molp.2016.11.013
Ren, 2017, A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice, Sci. China Life Sci., 60, 516, 10.1007/s11427-016-0406-x
Zafra, 2018, Optimized base editors enable efficient editing in cells, organoids and mice, Nat. Biotechnol., 36, 888, 10.1038/nbt.4194
Tanaka, 2018, In vivo targeted single-nucleotide editing in zebrafish, Sci. Rep., 8, 11423, 10.1038/s41598-018-29794-9
Liang, 2017, Effective gene editing by high-fidelity base editor 2 in mouse zygotes, Protein Cell, 8, 601, 10.1007/s13238-017-0418-2
Kim, 2017, Highly efficient RNA-guided base editing in mouse embryos, Nat. Biotechnol., 35, 435, 10.1038/nbt.3816
Wang, 2017, Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor, Cell Res., 27, 1289, 10.1038/cr.2017.111
Koblan, 2018, Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction, Nat. Biotechnol., 36, 843, 10.1038/nbt.4172
Suzuki, 2016, In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration, Nature, 540, 144, 10.1038/nature20565
Tang, 2017, Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation, Nat. Commun., 8, 15939, 10.1038/ncomms15939
Chadwick, 2017, In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing, Arterioscler. Thromb. Vasc. Biol., 37, 1741, 10.1161/ATVBAHA.117.309881
Yeh, 2018, In vivo base editing of post-mitotic sensory cells, Nat. Commun., 9, 2184, 10.1038/s41467-018-04580-3
Nami, 2018, Strategies for in vivo genome editing in nondividing cells, Trends Biotechnol., 36, 770, 10.1016/j.tibtech.2018.03.004
Ma, 2016, Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells, Nat. Methods, 13, 1029, 10.1038/nmeth.4027
Hess, 2016, Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells, Nat. Methods, 13, 1036, 10.1038/nmeth.4038
Kuscu, 2017, CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations, Nat. Methods, 14, 710, 10.1038/nmeth.4327
Billon, 2017, CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons, Mol. Cell, 67, 1068, 10.1016/j.molcel.2017.08.008
Gapinske, 2018, CRISPR-SKIP: programmable gene splicing with single base editors, Genome Biol., 19, 107, 10.1186/s13059-018-1482-5
Zhang, 2018, Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides, Genome Res., 28, 968, 10.1101/gr.231902.117
Yuan, 2018, Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase, Mol. Cell, 72, 380, 10.1016/j.molcel.2018.09.002
Liu, 2018, Highly efficient RNA-guided base editing in rabbit, Nat. Commun., 9, 2717, 10.1038/s41467-018-05232-2
Laloum, 2018, Alternative splicing control of abiotic stress responses, Trends Plant Sci., 23, 140, 10.1016/j.tplants.2017.09.019
Xue, 2018, Manipulating mRNA splicing by base editing in plants, Sci. China Life Sci., 61, 1293, 10.1007/s11427-018-9392-7
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Panda, 2018, DNA as a digital information storage device: hope or hype?, 3 Biotech, 8, 239, 10.1007/s13205-018-1246-7
Tang, 2018, Rewritable multi-event analog recording in bacterial and mammalian cells, Science, 360, 10.1126/science.aap8992
Farzadfard, 2018, Single-nucleotide-resolution computing and memory in living cells, bioRxiv
Farzadfard, 2018, Emerging applications for DNA writers and molecular recorders, Science, 361, 870, 10.1126/science.aat9249
Zeng, 2018, Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos, Mol. Ther., 26, 2631, 10.1016/j.ymthe.2018.08.007
Rossidis, 2018, In utero CRISPR-mediated therapeutic editing of metabolic genes, Nat. Med., 24, 1513, 10.1038/s41591-018-0184-6
Zhao, 2005, Neighboring-nucleotide effects on the mutation patterns of the rice genome, Genomics Proteomics Bioinformatics, 3, 158, 10.1016/S1672-0229(05)03021-4
Shimatani, 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nat. Biotechnol., 35, 441, 10.1038/nbt.3833
van Schie, 2014, Susceptibility genes 101: how to be a good host, Annu. Rev. Phytopathol., 52, 551, 10.1146/annurev-phyto-102313-045854
Moscou, 2009, A simple cipher governs DNA recognition by TAL effectors, Science, 326, 1501, 10.1126/science.1178817
Jacob, 2018, Translational research: exploring and creating genetic diversity, Trends Plant Sci., 23, 42, 10.1016/j.tplants.2017.10.002
Farnham, 2006, Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato, Proc. Natl. Acad. Sci. U. S. A., 103, 18828, 10.1073/pnas.0605777103
Harris, 2013, Stepwise artificial evolution of a plant disease resistance gene, Proc. Natl. Acad. Sci. U. S. A., 110, 21189, 10.1073/pnas.1311134110
Liu, 2017, Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications, J. Control. Release, 266, 17, 10.1016/j.jconrel.2017.09.012
Glass, 2018, Engineering the delivery system for CRISPR-based genome editing, Trends Biotechnol., 36, 173, 10.1016/j.tibtech.2017.11.006
Liu, 2019, CasX enzymes comprise a distinct family of RNA-guided genome editors, Nature, 566, 218, 10.1038/s41586-019-0908-x
Woo, 2015, DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins, Nat. Biotechnol., 33, 1162, 10.1038/nbt.3389
Cox, 2017, RNA editing with CRISPR-Cas13, Science, 358, 1019, 10.1126/science.aaq0180
Park, 2017, Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos, Mol. Cell, 40, 823
Zhang, 2017, Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system, Nat. Commun., 8, 118, 10.1038/s41467-017-00175-6
Zheng, 2018, Highly efficient base editing in bacteria using a Cas9–cytidine deaminase fusion, Commun. Biol., 1, 32, 10.1038/s42003-018-0035-5
Li, 2018, Programmable single and multiplex base-editing in Bombyx mori using RNA-guided cytidine deaminases, G3 (Bethesda), 8, 1701, 10.1534/g3.118.200134
Ma, 2018, Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats, Cell Discov., 4, 39, 10.1038/s41421-018-0047-9
Lee, 2018, Directed evolution of CRISPR-Cas9 to increase its specificity, Nat. Commun., 9, 3048, 10.1038/s41467-018-05477-x
Yang, 2018, Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants, Protein Cell, 9, 814, 10.1007/s13238-018-0568-x
Qin, 2018, Precise A*T to G*C base editing in the zebrafish genome, BMC Biol., 16, 139, 10.1186/s12915-018-0609-1
Chen, 2017, CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis, Sci. China Life Sci., 60, 520, 10.1007/s11427-017-9021-5
Li, 2017, Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system, Mol. Plant, 10, 526, 10.1016/j.molp.2016.12.001
Zong, 2017, Precise base editing in rice, wheat and maize with a Cas9–cytidine deaminase fusion, Nat. Biotechnol., 35, 438, 10.1038/nbt.3811
Kang, 2018, Precision genome engineering through adenine base editing in plants, Nat. Plants, 4, 427, 10.1038/s41477-018-0178-x
Hua, 2018, Expanding the base editing scope in rice by using Cas9 variants, Plant Biotechnol. J., 17, 499, 10.1111/pbi.12993
Endo, 2018, Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM, Nat. Plants, 5, 14, 10.1038/s41477-018-0321-8
Barnes, 2004, Repair and genetic consequences of endogenous DNA base damage in mammalian cells, Annu. Rev. Genet., 38, 445, 10.1146/annurev.genet.38.072902.092448
Zong, 2018, Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A, Nat. Biotechnol., 36, 950, 10.1038/nbt.4261
Grunebaum, 2013, Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies, Curr. Opin. Allergy Clin. Immunol., 13, 630, 10.1097/ACI.0000000000000006
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, 10.1126/science.aaf5573
Zuris, 2015, Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo, Nat. Biotechnol., 33, 73, 10.1038/nbt.3081
Liang, 2015, Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection, J. Biotechnol., 208, 44, 10.1016/j.jbiotec.2015.04.024
Sasaguri, 2019, Introduction of pathogenic mutations into the mouse Psen1 gene by base editor and target-AID, Nat. Commun., 9, 2892, 10.1038/s41467-018-05262-w
Wu, 2010, Effect of genome size on AAV vector packaging, Mol. Ther., 18, 80, 10.1038/mt.2009.255
Gajula, 2019, Designing an elusive C•G→G•C CRISPR base editor, Trends Biochem. Sci., 44, 91, 10.1016/j.tibs.2018.10.004