Deep Learning for Automated Product Design

Procedia CIRP - Tập 91 - Trang 3-8 - 2020
Carmen Krahe1, Antonio Bräunche1, Alexander Jacob1, Nicole Stricker1, Gisela Lanza1
1Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany

Tài liệu tham khảo

Albers, 2017, Agile product engineering through continuous validation in PGE – Product Generation Engineering, Des. Sci., 3, 8, 10.1017/dsj.2017.5 Albers, A., Haug, F., Fahl, J., Hirschter, T., Reinemann, J., Rapp, S., 2018 Generative Adversarial Networks. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L., 2018. Learning Representations and Generative Models for 3D Point Clouds. 35th International Conference on Machine Learning (ICML). Mirza, M., Osindero, S., 2014. Conditional Generative Adversarial Nets. Goodfellow, 2016 Schmidhuber, 2015, Deep Learning in Neural Networks: An Overview, Neural Networks, 61, 85, 10.1016/j.neunet.2014.09.003 Aivaliotis, 2017, A Machine Learning Approach for Visual Recognition of Complex Parts in Robotic Manipulation, Procedia Manufacturing, 11, 423, 10.1016/j.promfg.2017.07.130 Pandremenos, 2011, A neural network approach for the development of modular product architectures, International Journal of Computer Integrated Manufacturing, 24, 879, 10.1080/0951192X.2011.602361 Radhakrishnan, 2018, Creative Intelligence – Automating Car Design Studio with Generative Adversarial Networks (GAN), 160 Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F., 2015. ShapeNet: An Information-Rich 3D Model Repository. Wu, 2015, 1912 Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015 - 2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition, in: 2015 IEEE ICCV, pp. 945–953. Kanezaki, A., Matsushita, Y, Nishida, Y, 2016. RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints, 24 pp. Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T. Orientation-boosted Voxel Nets for 3D Object Recognition, in: Procedings of the British Machine Vision Conference 2017. Charles, R.Q., Su, H, Kaichun, M., Guibas, L.J., 2017 - 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, in: 2017 CVPR, pp. 77–85. Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Simonovsky, M., Komodakis, N, 2017. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. Hegde, V., Zadeh, R., 2016. FusionNet: 3D Object Classification Using Multiple Data Representations. Chen, 2019, 3D Object Completion via Class-Conditional Generative Adversarial Network, 54 Girdhar, R, Fouhey, D.F, Rodriguez, M, Gupta, A, 2016. Learning a Predictable and Generative Vector Representation for Objects. Li, C.-L, Zaheer, M, Zhang, Y, Poczos, B, Salakhutdinov, R, 2018. Point Cloud GAN. Simonovsky, M, 2019. Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back. Wang, 2016, An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning, Neurocomputing, 174, 988, 10.1016/j.neucom.2015.10.035 Wu, 2016, Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, 82 Yang, Y., Feng, C., Shen, Y., Tian, D., 2017. FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation. Wang, X., Gupta, A., 2016. Generative Image Modeling using Style and Structure Adversarial Networks. Öngün, C, Temizel, A., 2018. Paired 3D Model Generation with Conditional Generative Adversarial Networks.