Yb3+/Er3+ co-doped Lu2TeO6 nanophosphors: Hydrothermal synthesis, upconversion luminescence and highly sensitive temperature sensing performance

Journal of Alloys and Compounds - Tập 772 - Trang 525-531 - 2019
Zhili Ma1, Jie Gou1, Yu Zhang1, Yuhong Man1, Guannan Li1, Chunmei Li1, Jianfeng Tang1
1Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

Tài liệu tham khảo

Wang, 2010, Upconversion nanoparticles in biological labeling, imaging, and therapy, Analyst, 135, 1839, 10.1039/c0an00144a Downing, 1996, A three-color, solid-state, three-dimensional display, Science, 273, 1185, 10.1126/science.273.5279.1185 Scheps, 1996, Upconversion laser processes, Prog. Quant. Electron., 20, 271, 10.1016/0079-6727(95)00007-0 Yang, 2014, Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis, Nanotechnology, 25, 482001, 10.1088/0957-4484/25/48/482001 Wang, 2009, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976, 10.1039/b809132n Zijlmans, 1999, Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology, Anal. Biochem., 267, 30, 10.1006/abio.1998.2965 Zheng, 2015, Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H Tang, 2016, Tunable upconversion luminescence from the phosphors of Yb3+, Tm3+ and Ho3+ tri-doped Re2TeO6 (Re = La, Gd, and Lu), J. Alloys. Compd., 672, 1, 10.1016/j.jallcom.2016.02.157 Tang, 2015, Power driven tunable white upconversion luminescence from Lu2TeO6 tri-doped with Yb3+, Tm3+ and Ho3+, CrystEngComm, 17, 9048, 10.1039/C5CE01734C Pollnau, 2000, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B, 61, 3337, 10.1103/PhysRevB.61.3337 Haase, 2011, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808, 10.1002/anie.201005159 Dong, 2015, Energy transfer in lanthanide upconversion studies for extended optical applications, Chem. Soc. Rev., 44, 1608, 10.1039/C4CS00188E Tkachuk, 1998, Self-quenching of luminescence in YLF:Tm3+ crystals: I. Microscopic parameters and rates of energy transfer, Opt. Spectrosc., 85, 885 Wade, 2003, Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys., 94, 4743, 10.1063/1.1606526 Haro-González, 2011, Characterization of Er3+ and Nd3+ doped strontium barium niobate glass ceramic as temperature sensors, Opt. Mater., 33, 742, 10.1016/j.optmat.2010.11.026 Collins, 1998, Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation, J. Appl. Phys., 84, 4649, 10.1063/1.368705 Mahata, 2015, Er3+-Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior, Sens. Actuators B Chem., 209, 775, 10.1016/j.snb.2014.12.039 Zhou, 2013, Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing, Opt. Commun., 291, 138, 10.1016/j.optcom.2012.11.005 León-Luis, 2011, Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass, Sens. Actuators B Chem., 158, 208, 10.1016/j.snb.2011.06.005 Yang, 2014, Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor, Ceram. Int., 40, 9875, 10.1016/j.ceramint.2014.02.081 Yang, 2014, A novel multifunctional upconversion phosphor:Yb3+/Er3+ codoped La2S3, J. Am. Ceram. Soc., 97, 1769, 10.1111/jace.12822 Dong, 2007, Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3, Appl. Phys. Lett., 90, 10.1063/1.2735955 Tang, 2018, Sol-gel prepared Yb3+/Er3+ co-doped RE2O3 (RE = La, Gd, Lu) nanocrystals: structural characterization and temperature-dependent upconversion behavior, J. Alloys Compd., 740, 229, 10.1016/j.jallcom.2018.01.050 Chai, 2016, Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4, Opt. Express, 24, 10.1364/OE.24.022438 Huang, 2015, Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing, J. Alloys Compd., 639, 325, 10.1016/j.jallcom.2015.02.228 Wei, 2012, Optical thermometry through green upconversion emissions in Er3+/Yb3+ -codoped CaWO4 phosphor, Appl. Phys. Express, 5 Cai, 2016, Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals, Ceram. Int., 42, 13990, 10.1016/j.ceramint.2016.06.002 Tang, 2017, Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring, Opt. Mater. Express, 7, 3238, 10.1364/OME.7.003238 Li, 2007, Er3+–Yb3+ co-doped silicate glass for optical temperature sensor, Chem. Phys. Lett., 443, 426, 10.1016/j.cplett.2007.06.081