Energy savings potentials of commercial buildings by urban heat island reduction strategies in Montreal (Canada)

Energy and Buildings - Tập 110 - Trang 41-48 - 2016
Ali G. Touchaei1, Mirata Hosseini1, Hashem Akbari1
1Building, Civil and Environmental Engineering Department, Concordia University, Montreal, Quebec, Canada

Tài liệu tham khảo

Bonamente, 2013, An energy-balanced analytic model for urban heat canyons: comparison with experimental data, Adv. Build. Energy Res., 7, 222, 10.1080/17512549.2013.865561 Akbari, 2004, Energy effects of heat-island reduction strategies in Toronto, Canada, Energy, 29, 191, 10.1016/j.energy.2003.09.004 Akbari, 2005, Calculating energy-saving potentials of heat-island reduction strategies, Energy Policy, 33, 721, 10.1016/j.enpol.2003.10.001 Rossi, 2015, Retroreflective façades for urban heat island mitigation: experimental investigation and energy evaluations, Appl. Energy, 145, 8, 10.1016/j.apenergy.2015.01.129 Akbari, 2014, Modeling and labeling heterogeneous directional reflective roofing materials, Solar Energy Mater. Solar Cells, 124, 192, 10.1016/j.solmat.2014.01.036 Hooshangi, 2015, Measuring solar reflectance of variegated flat roofing materials using quasi-Monte Carlo method, Energy Build. Ferrari, 2013, Effect of aging processes on solar reflectivity of clay roof tiles, Adv. Build. Energy Res., 8, 28, 10.1080/17512549.2014.890535 Taha, 1988, Residential cooling loads and the urban heat island the effects of albedo, Build. Environ., 23, 271, 10.1016/0360-1323(88)90033-9 LBNL, 1982 Cotana, 2014, Albedo control as an effective strategy to tackle Global Warming: a case study, Appl. Energy, 130, 641, 10.1016/j.apenergy.2014.02.065 Akbari, 2012, The long-term effect of increasing the albedo of urban areas, Environ. Res. Lett., 7, 024004, 10.1088/1748-9326/7/2/024004 Taha, 1997, Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat, Energy Build., 25, 99, 10.1016/S0378-7788(96)00999-1 Akbari, 2001, Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas, Solar Energy, 70, 295, 10.1016/S0038-092X(00)00089-X Salamanca, 2010, A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. Formulation, verification, and sensitivity analysis of the model, Theor. Appl. Climatol., 99, 331, 10.1007/s00704-009-0142-9 Roos, 1997, Optical characterization of coated glazings at oblique angles of incidence: measurements versus model calculations, J. Non-Cryst. Solids, 218, 247, 10.1016/S0022-3093(97)00074-4 Martilli, 2002, An urban surface exchange parameterization for mesoscale models, Bound. Layer Meteorol., 104, 261, 10.1023/A:1016099921195 Rotach, 2005, BUBBLE – an urban boundary layer meteorology project, Theor. Appl. Climatol., 81, 231, 10.1007/s00704-004-0117-9 Bueno, 2011, Combining a detailed building energy model with a physically-based urban canopy model, Bound. Layer Meteorol., 140, 471, 10.1007/s10546-011-9620-6 Hamdi, 2007, Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities, Atmos. Chem. Phys., 7, 4513, 10.5194/acp-7-4513-2007 Touchaei, 2015, Evaluation of the seasonal effect of increasing albedo on urban climate and energy consumption of buildings in Montreal, Urban Clim., 10.1016/j.uclim.2015.09.007 Touchaei, 2013, The climate effects of increasing the albedo of roofs in a cold region, Adv. Build. Energy Res., 7, 186, 10.1080/17512549.2013.865558 Sullivan, 1998 Hosseini, 2014, Heating energy penalties of cool roofs: the effect of snow accumulation on roofs, Adv. Build. Energy Res., 8, 1, 10.1080/17512549.2014.890541 Hosseini, 2014 Hosseini, 2015, Effect of cool roofs on commercial buildings energy use in cold climates, Energy Build. Gray, 1970 Sturm, 1997, The thermal conductivity of seasonal snow, Glaciology, 43, 26, 10.1017/S0022143000002781 Flanner, 2007, Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, 10.1029/2006JD008003 Flanner, 2009, Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481, 10.5194/acp-9-2481-2009 Environment Canada, (2008). Online: http://climate.weather.gc.ca/prods_servs/engineering_e.html Bornstein, 1986 Karlsson, 2000, Modelling the angular behavior of the total solar energy transmittance of windows, Solar Energy, 69, 321, 10.1016/S0038-092X(00)00083-9 Salamanca, 2010, A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. Validation with one dimension off-line simulations, Theor. Appl. Climatol., 99, 345, 10.1007/s00704-009-0143-8 Scherba, 2011, Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment, Build. Environ., 46, 2542, 10.1016/j.buildenv.2011.06.012 Touchaei, 2015, Characterizing urban heat island in Montreal (Canada)—effect of urban morphology, Sustain. Cities Soc., 10.1016/j.scs.2015.03.005 Environment Canada, (2014). Online: http://climate.weather.gc.ca/ Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., Yazdanian, M., Huang, J., Crawley, D. (2011). U.S. Department of Energy commercial reference building models of the national building stock. 1-118