Direct electron transfer between copper-containing proteins and electrodes

Biosensors and Bioelectronics - Tập 20 - Trang 2517-2554 - 2005
Sergey Shleev1,2, Jan Tkac1,3, Andreas Christenson1, Tautgirdas Ruzgas1, Alexander I. Yaropolov2, James W. Whittaker4, Lo Gorton1
1Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
2A.N. Bach Institute of Biochemistry, RAS, Leninsky prospekt 33, 119071 Moscow, Russia
3Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 812 37 Bratislava, Slovak Republic
4Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, OR 97006, USA

Tài liệu tham khảo

Adman, 1978, A crystallographic model for azurin at 3Å resolution, J. Mol. Biol., 123, 35, 10.1016/0022-2836(78)90375-3 Agostinelli, 1995, Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase, Biochem. J., 306, 697, 10.1042/bj3060697 Aguey-Zinsou, 2003, Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. Chem. Soc., 125, 530, 10.1021/ja028293e Allendorf, 1985, Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site, Proc. Natl. Acad. Sci. U.S.A., 82, 3063, 10.1073/pnas.82.10.3063 Andolfi, 2004, The electrochemical characteristics of blue copper protein monolayers on gold, J. Electroanal. Chem., 565, 21, 10.1016/j.jelechem.2003.09.038 Antorini, 2001, Purification, crystallization and X-ray diffraction study of fully functional laccases from two ligninolytic fungi, Biochim. Biophys. Acta, 1594, 109, 10.1016/S0167-4838(01)00289-8 Antorini, 2002, Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi, Biochim. Biophys. Acta, 1594, 109, 10.1016/S0167-4838(01)00289-8 Armstrong, 2002, Protein film voltammetry: revealing the mechanisms of biological oxidation and reduction, Russ. J. Electrochem., 38, 49, 10.1023/A:1013786328075 Armstrong, 1984, Direct electrochemistry of redox proteins at pyrolytic graphite electrodes, J. Am. Chem. Soc., 106, 921, 10.1021/ja00316a015 Armstrong, 2004, Fast, long-range electron-transfer reactions of a “blue” copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer, Chem. Commun. (UK), 316, 10.1039/B312936E Armstrong, 2000, Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins, Faraday Disc., 116, 191, 10.1039/b002290j Atanassov, P., 2002. Laccase-catalyzed direct electron transfer: application in bio-fuel cell cathode. In: Proceedings of the 223rd ACS National Meeting, Orlando, FL, USA, 7–11 April 2002, COLL-378 (abstracts of papers). Avigliano, 1983, A reinvestigation on the quaternary structure of ascorbate oxidase from Cucurbita pepomedullosa, Mol. Cell. Biochem., 56, 107, 10.1007/BF00227210 Baker, 1988, Structure of azurin from Alcaligenes denitrificans, Refinement at 1.8Å resolution and comparison of the two crystallographically independent molecules, J. Mol. Biol., 203, 1071, 10.1016/0022-2836(88)90129-5 Balakshin, 2001, Biobleaching of pulp with dioxygen in laccase-mediator system—effect of variables on the reaction kinetics, J. Mol. Catal. B: Enzyme, 16, 205, 10.1016/S1381-1177(01)00062-5 Barton, 2002, Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the ‘wired’ Pleurotus ostreatus laccase cathode, Biosens. Bioelectron., 17, 1071, 10.1016/S0956-5663(02)00100-8 Barton, 2001, The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5, J. Am. Chem. Soc., 123, 5802, 10.1021/ja010408b Battistuzzi, 2001, Control of metalloprotein reduction potential: the role of electrostatic and solvation effects probed on plastocyanin mutants, Biochemistry, 40, 6422, 10.1021/bi002565d Berezin, 1978, Bioelectrocatalysis, Dokl. Akad. Nauk SSSR, 240, 615 Bielli, 2002, Structure to function relationships in ceruloplasmin: a “moonlighting” protein, Cell. Mol. Life Sci., 59, 1413, 10.1007/s00018-002-8519-2 Bilkova, 2002, Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres, J. Chromatogr. B, 770, 25, 10.1016/S0378-4347(01)00439-X Bistolas, 2004, Spectroelectrochemistry of cytochrome P450cam, Biochem. Biophys. Res. Commun., 314, 810, 10.1016/j.bbrc.2003.12.159 Bogdanovskaya, 1986, Influence of the state of carbon sorbents on the activity of immobilized phenol oxidases, Elektrokhimiya (Moscow), 22, 742 Bolobova, 2002, Theoretical bases of biotechnology of wood aggregates, Science (Moscow) Bond, 1994, Chemical and electrochemical approaches to the investigations of redox reactions of simple electron transfer metaloproteins, Inorg. Chim. Acta, 226, 293, 10.1016/0020-1693(94)04082-6 Borman, 1999, Reactivity of galactose oxidase, Coordin. Chem. Rev., 190–192, 771, 10.1016/S0010-8545(99)00120-4 Call, 1997, History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process), J. Biotechnol., 53, 163, 10.1016/S0168-1656(97)01683-0 Carrico, 1971, Reduction and oxidation of human ceruloplasmin, Eur. J. Biochem., 22, 127, 10.1111/j.1432-1033.1971.tb01523.x Casella, 1993, Hemocyanin and tyrosinase models, Inorg. Chem., 32, 2056, 10.1021/ic00062a030 Cha, 1999, Ceruloplasmin has a distinct active site for the catalyzing glutathione-dependent reduction of alkyl hydroperoxide, Biochemistry, 38, 12104, 10.1021/bi990444b Chen, 2004, Nanotechnology and biosensors, Biotechnol. Adv., 22, 505, 10.1016/j.biotechadv.2004.03.004 Chen, 2004, O2 activation by binuclear Cu sites: noncoupled versus exchange couples reaction mechanisms, Proc. Natl. Acad. Sci. U.S.A., 101, 13105, 10.1073/pnas.0402114101 Christenson, 2004, Direct heterogeneous electron transfer of theophylline oxidase, Biosens. Bioelectron., 20, 176, 10.1016/j.bios.2004.03.010 Christenson, 2004, Direct electron transfer between ligninolytic redox enzymes and electrodes, Electroanalysis, 16, 1074, 10.1002/elan.200403004 Cleveland, 1975, An investigation of the role of the copper in galactose oxidase, Biochemistry, 14, 1108, 10.1021/bi00677a003 Cooper, 1959, Galactose oxidase from Polyporus circinatus, Fr. J. Biol. Chem., 234, 445, 10.1016/S0021-9258(18)70223-8 Cuff, 1998, Crystal structure of a functional unit from Octopus hemocyanin, J. Mol. Biol., 278, 855, 10.1006/jmbi.1998.1647 Davis, 2003, Genetic modulation of metalloprotein electron transfer at bare gold, Chem. Commun., 576, 10.1039/b211246a De Ley, 1975, Intramolecular electron transport in human ferroxidase (ceruloplasmin), Biochem. J., 151, 561, 10.1042/bj1510561 Deinum, 1973, The stoichiometry of the paramagnetic copper and the oxidation–reduction potentials of type I copper in human ceruloplasmin, Biochim. Biophys. Acta, 310, 321, 10.1016/0005-2795(73)90112-8 Deverall, 1961, Phenolase and pectic enzyme activity in chocolate spot disease of beans, Nature, 189, 311, 10.1038/189311a0 Duckworth, 1970, Determination of metals in 100 microliter sample volumes by atomic absorption analysis using the “spike-height” method of absorbance measurement, Anal. Biochem., 34, 382, 10.1016/0003-2697(70)90123-5 Ducros, 1998, Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2Å resolution, Nat. Struct. Biol., 5, 310, 10.1038/nsb0498-310 Eddowes, 1977, Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c, J. Chem. Soc. Chem. Commun., 771, 10.1039/c3977000771b Enguita, 2003, Crystal structure of a bacterial endospore coat component: a laccase with enhanced thermostability properties, J. Biol. Chem., 278, 19416, 10.1074/jbc.M301251200 Esaka, 1992, Regulation of ascorbate oxidase expression in pumpkin by auxin and copper, Plant Physiol., 100, 231, 10.1104/pp.100.1.231 Farrar, 1991, A model of the copper centers of nitrous oxide reductase (Pseudomonas stutzeri), FEBS Lett., 294, 11, 10.1016/0014-5793(91)81331-2 Ferapontova, 2003, Direct electron transfer of heme- and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes, Anal. Chem., 75, 4841, 10.1021/ac0341923 Ferapontova, 2004, Spectroelectrochemical study of heme- and molybdopterin cofactor-containing chicken liver sulphite oxidase, Bioelectrochemistry, 63, 49, 10.1016/j.bioelechem.2003.09.013 Firbank, 2003, Cofactor processing in galactose oxidase, Biochem. Soc. T, 31, 506, 10.1042/bst0310506 Fischer, 2003, Reversible “irreversible” inhibition of chymotrypsin using nanoparticle receptors, J. Am. Chem. Soc., 125, 13387, 10.1021/ja0352505 Flamm, 1990, Recurrent superficial transitional cell carcinoma of the bladder: adjuvant topical chemotherapy versus immunotherapy, J. Urol., 144, 260, 10.1016/S0022-5347(17)39427-2 Freire, 2001, Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds, Talanta, 54, 681, 10.1016/S0039-9140(01)00318-6 Frieden, 1976, Ceruloplasmin: the copper transport protein with essential oxidase activity, Adv. Enzymol. Ramb., 44, 187 Furbee, 1993, Mediated electrochemical reduction of cytochrome c and tyrosinase at perfluorosulfonated ionomer coated electrodes, Anal. Chem., 65, 1654, 10.1021/ac00061a004 Galhaup, 2002, Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions, Microbiology (UK), 148, 2159, 10.1099/00221287-148-7-2159 Gelo-Pujic, 1999, Electrochemical studies of a truncated laccase produced in Pichia pastoris, Appl. Environ. Microbiol., 65, 5515, 10.1128/AEM.65.12.5515-5521.1999 Ghindilis, 1997, Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications, Electroanalysis, 9, 661, 10.1002/elan.1140090902 Givaudan, 1993, Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum, FEMS Microbiol. Lett., 108, 205, 10.1111/j.1574-6968.1993.tb06100.x Gorton, 1999, Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Anal. Chim. Acta, 400, 91, 10.1016/S0003-2670(99)00610-8 Grass, 2001, CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli, Biochem. Biophys. Res. Commun., 286, 902, 10.1006/bbrc.2001.5474 Grogan, 2000, Fungicide resistance among Cladobotryum spp. causal agents of cobweb disease of the edible mushroom Agaricus bisporus, Mycol. Res., 104, 357, 10.1017/S0953756299001197 Gunnarsson, 1973, Kinetics of the interaction between ceruloplasmin and reducing substrates, Eur. J. Biochem., 37, 41, 10.1111/j.1432-1033.1973.tb02954.x Guo, 1991, Purification and properties of bilirubin oxidase from Myrothecium verrucaria, Appl. Biochem. Biotechnol., 31, 135, 10.1007/BF02921784 Guo, 1991, Direct electrochemistry of proteins and enzymes, Adv. Inorg. Chem., 36, 341, 10.1016/S0898-8838(08)60043-4 Gupta, 2004, Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrode, Electroanalysis, 16, 1182, 10.1002/elan.200403010 Haghighi, 2003, Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis, Anal. Chim. Acta, 487, 3, 10.1016/S0003-2670(03)00077-1 Hakulinen, 2002, Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site, Nat. Struct. Biol., 9, 601 Haladjian, 1994, A permselective-membrane electrode for the electrochemical study of redox proteins, Anal. Chim. Acta, 289, 15, 10.1016/0003-2670(94)80002-2 Hale, 1989, Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: a study of the glucose oxidase/glucose and galactose oxidase/galactose system, Synth. Met., 28, C853, 10.1016/0379-6779(89)90613-9 Hasebe, 2000, Amperometric flow-type l-histidine sensor using an immobilized galactose oxidase reactor, based on a novel catalytic activity induced by exogenous histidine, Sens. Actuators B: Chem., 66, 12, 10.1016/S0925-4005(99)00451-7 Heller, 2004, Miniature biofuel cells, Phys. Chem. Chem. Phys., 6, 209, 10.1039/b313149a Herskovits, 1988, Recent aspects of the subunit organization and dissociation of hemocyanins, Comp. Biochem. Physiol., 91, 597, 10.1016/0305-0491(88)90179-4 Herskovits, 1984, Light-scattering investigation of the subunit structure and dissociation of Helix pomatia hemocyanin, Biochemistry, 23, 2812, 10.1021/bi00307a043 Hill, 1993, 501 Hill, 1996, 317 Himmelwright, 1980, Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins, J. Am. Chem. Soc., 102, 7339, 10.1021/ja00544a031 Hirst, 1998, Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange, Anal. Chem., 70, 5062, 10.1021/ac980557l Hirst, 1996, Electrocatalytic voltammetry of succinate dehydrogenase: direct quantification of the catalytic properties of a complex electron-transport enzyme, J. Am. Chem. Soc., 118, 5031, 10.1021/ja9534361 Hyung, 1997, Immobilization of laccase onto the gold electrode using b-mercaptopropionate, Bull. Korean Chem. Soc., 18, 564 Ito, 1991, Novel thioether bond revealed by a 1.7Å crystal structure of galactose oxidase, Nature, 350, 87, 10.1038/350087a0 Itoh, 1995, Properties of ascorbate oxidase produced by Acremonium sp. HI-25, Biosci. Biotech. Biochem., 59, 1052, 10.1271/bbb.59.1052 Itoh, 1997, Active site models for galactose oxidase, Inorg. Chem., 36, 1407, 10.1021/ic961144a Iwata, 1995, Structure at 2.8Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, 376, 660, 10.1038/376660a0 Jaegfeldt, 1983, Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide, J. Am. Chem. Soc., 105, 1805, 10.1021/ja00345a021 Jeuken, 2001, Electrochemical origin of hysteresis in the electron-transfer reactions of adsorbed proteins: contrasting behavior of the “blue” copper protein, azurin, adsorbed on pyrolytic graphite and modified gold electrodes, J. Phys. Chem. B, 105, 5271, 10.1021/jp004283t Jeuken, 2002, Insights into gated electron-transfer kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin, J. Phys. Chem. B, 106, 2304, 10.1021/jp0134291 Jeuken, 2000, Role of the surface-exposed and copper-coordinating histidine in blue copper proteins: the electron-transfer and redox-coupled ligand binding properties of His117Gly azurin, J. Am. Chem. Soc., 122, 12186, 10.1021/ja0006144 Jönsson, 1989, An electrochemical sensor for hydrogen peroxide based on peroxidase adsorbed on a spectrographic graphite electrode, Electroanalysis, 1, 465, 10.1002/elan.1140010515 Johnson, 2003, Electrochemical characterization of purified Rhus vernicifera laccase: voltammetric evidence for a sequential four-electron transfer, Biochemistry, 42, 10229, 10.1021/bi034268p Johnson, 1985, Redox activation of galactose oxidase: thin-layer electrochemical study, Biochemistry, 24, 1579, 10.1021/bi00328a001 Jurincic, 1988, Immunotherapy in bladder cancer with keyhole-limpet hemocyanin: a randomized study, J. Urol., 139, 723, 10.1016/S0022-5347(17)42610-3 Kahn, 1992, A phase I study of HGP-30, a 30 amino acid subunit of the human immunodeficiency virus (HIV) p17 synthetic peptide analogue sub-unit vaccine in seronegative subjects, AIDS Res. Hum. Retrov., 8, 1321, 10.1089/aid.1992.8.1321 Kaim, 1996, Copper—a “modern” bioelement, Angew. Chem. Int. Ed. Engl., 35, 43, 10.1002/anie.199600431 Kano, 2003, Biofuel cells, Denshi Zairyo, 42, 38 Karamyshev, 2003, Laccase-catalyzed synthesis of conducting polyaniline, Enzyme Microb. Technol., 33, 556, 10.1016/S0141-0229(03)00163-7 Kawahara, 1984, Characterization of cucumber ascorbate oxidase and its reaction with hexacyanoferrate(II), Arch. Biochem. Biophys., 241, 179, 10.1016/0003-9861(85)90374-1 Kitano, 2002, Catalytic effects of galactose oxidase on micelle-forming galactolipids, J. Colloid Interface Sci., 255, 260, 10.1006/jcis.2002.8676 Klabunde, 1998, Crystal structure of a plant catechol oxidase containing a dicopper center, Nat. Struct. Biol., 5, 1084, 10.1038/4193 Klinman, 1996, Mechanisms whereby mononuclear copper proteins functionalize organic substrates, Chem. Rev., 96, 2541, 10.1021/cr950047g Klonowska, 2002, Characterization of a low redox potential laccase from the basidiomycete C30, Eur. J. Biochem., 269, 6119, 10.1046/j.1432-1033.2002.03324.x Kojima, 1990, Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus, J. Biol. Chem., 265, 15224, 10.1016/S0021-9258(18)77245-1 Kondakova, 2002, Adsorption and chemisorption of galactose oxidase on silica surface, Khim. Fiz. Tekhnol. Poverkhni, 7–8, 150 Koroleva, 2001, Isolation and study of some properties of laccase from the basidiomycetes Cerrena maxima, Biochemistry (Moscow), 66, 618, 10.1023/A:1010299012591 Kroneck, 1982, Ascorbate oxidase: molecular properties and catalytic activity, Adv. Chem. Ser., 200, 223, 10.1021/ba-1982-0200.ch010 Kuznetsov, 1977, Electrochemical behavior of proteins containing coenzyme groups and metals, Bioelectrochem. Bioenerg., 4, 1, 10.1016/0302-4598(77)80001-9 Kuznetsov, 2001, On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode, Biosens. Bioelectron., 16, 73, 10.1016/S0956-5663(00)00135-4 Larsson, 2001, Spectroelectrochemical study of cellobiose dehydrogenase and diaphorase in a thiol-modified gold capillary in the absence of mediators, Bioelectrochemistry, 53, 243, 10.1016/S0302-4598(01)00099-X Le Mest, 1980, Electrochemical behavior of a hemocyanin model: [2,6-bis[1-(2-imidazol-4-ylethylimino)ethyl]pyridine]copper(I) tetrafluoroborate, Crit. Acad. Sci. II C, 290, 41 Lee, 1984, Catalysis of the reduction of dioxygen at graphite electrodes coated with fungal laccase A, J. Electroanal. Chem., 172, 289, 10.1016/0022-0728(84)80193-X Lee, 2002, Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase, J. Am. Chem. Soc., 124, 6180, 10.1021/ja0114052 Lerch, 1972, Purification and characterization of a tyrosinase from Streptomyces glaucescens, Eur. J. Biochem., 31, 427, 10.1111/j.1432-1033.1972.tb02549.x Lewis, 2004, Reactivity of dioxygen–copper systems, Chem. Rev., 104, 1047, 10.1021/cr020633r Lin, 1991, Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.), Plant Physiol., 96, 159, 10.1104/pp.96.1.159 Lindgren, 2001, Direct electron transfer of native and modified peroxidases, Curr. Top. Anal. Chem., 2, 71 Lindgren, 1998, Comparison of rotating disk and wall-jet electrode systems for studying the kinetics of direct and mediated electron transfer for horseradish peroxidase on a graphite electrode, J. Electroanal. Chem., 458, 113, 10.1016/S0022-0728(98)00326-X Lindgren, 1999, Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism, Electrochem. Commun., 1, 171, 10.1016/S1388-2481(99)00033-8 Lindley, 1997, An X-ray structural study of human ceruloplasmin in relation to ferroxidase activity, J. Biol. Inorg. Chem., 2, 454, 10.1007/s007750050156 Lovell, 2003, Density functional methods applied to metalloenzymes, Coord. Chem. Rev., 238–239, 211, 10.1016/S0010-8545(02)00331-4 Machonkin, T.E., 2000. Spectroscopic and biochemical studies of multicopper oxidases involved in iron metabolism. Ph.D. Thesis, Stanford University, Stanford, CA, USA. Machonkin, 1998, Spectroscopic and magnetic studies of human ceruloplasmin: identification of a redox-inactive reduces type 1 copper site, Biochemistry, 37, 9570, 10.1021/bi980434v Magnus, 1994, Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences, Proteins, 19, 302, 10.1002/prot.340190405 Makino, 1974, The oxidation state of copper in resting tyrosinase, J. Biol. Chem., 249, 6062, 10.1016/S0021-9258(19)42219-9 Malkin, 1970, State and function of copper in biological systems, Adv. Enzymol. Ramb., 33, 177 Malmström, 1990, Cytochrome oxidase: some unsolved problems and controversial issues, Arch. Biochem. Biophys., 280, 233, 10.1016/0003-9861(90)90325-S Mano, 2003, A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc., 150, A1136, 10.1149/1.1592519 Mano, 2002, On the relationship between the characteristics of bilirubin oxidases and O2 cathodes based on their “wiring”, J. Phys. Chem. B, 106, 8842, 10.1021/jp025955d Mano, 2003, Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc., 125, 6588, 10.1021/ja0346328 Mano, 2003, Oxygen Is electroreduced to water on a “wired” enzyme electrode at a lesser overpotential than on platinum, J. Am. Chem. Soc., 125, 15290, 10.1021/ja038285d Marchesini, 1979, Ascorbate oxidase from Cucurbita pepomedullosa, Eur. J. Biochem., 101, 65, 10.1111/j.1432-1033.1979.tb04217.x Markl, 1986, Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods, Biol. Bull. (USA), 171, 90, 10.2307/1541909 Martins, 2002, Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat, J. Biol. Chem., 277, 18849, 10.1074/jbc.M200827200 Mason, 1955, Oxygen transfer and electron transport by the phenolase complex, J. Am. Chem. Soc., 77, 2914, 10.1021/ja01615a088 Mayer, 2002, Laccase: new functions for an old enzyme, Phytochemistry, 60, 551, 10.1016/S0031-9422(02)00171-1 Messerschmidt, 1990, The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin, Eur. J. Biochem., 187, 341, 10.1111/j.1432-1033.1990.tb15311.x Messerschmidt, 1992, Refined crystal structure of ascorbate oxidase at 1.9Å resolution, J. Mol. Biol., 224, 179, 10.1016/0022-2836(92)90583-6 Messerschmidt, 1989, X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini, J. Mol. Biol., 206, 513, 10.1016/0022-2836(89)90498-1 Mirica, 2004, Structure and spectroscopy of copper–dioxygen complexes, Chem. Rev., 104, 1013, 10.1021/cr020632z Miyata, 1995, Micro enzyme-sensor with an osmium complex and porous carbon for measuring galactose, Bull. Chem. Soc. Jpn., 68, 1921, 10.1246/bcsj.68.1921 Mondovi, 1984, Recent results on the active site of amine oxidases, Agents Actions, 14, 356, 10.1007/BF01973826 Nakagawa, 2003, Bilirubin oxidase and [Fe(CN)6]3-/4-modified electrode allowing diffusion-controlled reduction of O2 to water at pH 7.0, Chem. Lett., 32, 54, 10.1246/cl.2003.54 Nakamura, 1958, Purification and physicochemical properties of laccase, Biochim. Biophys. Acta, 30, 44, 10.1016/0006-3002(58)90239-7 Nakamura, 1968, Purification and properties of ascorbate oxidase from cucumber, J. Biochem. (Tokyo), 64, 189, 10.1093/oxfordjournals.jbchem.a128879 Nar, 1991, X-ray crystal structure of the two site-specific mutants His35Gln and His35Leu of azurin from Pseudomonas aeruginosa, J. Mol. Biol., 218, 427, 10.1016/0022-2836(91)90723-J Nelson, 1970, Tyrosinase (mushroom), Methods Enzymol., 17, 626, 10.1016/0076-6879(71)17251-5 Newcomb, 1951, Effect of auxin on ascorbic acid oxidase activity in tobacco pith cells, P. Soc. Exp. Biol. Med., 76, 504, 10.3181/00379727-76-18538 Nishioka, 1978, Particulate tyrosinase of human malignant melanoma, Eur. J. Biochem., 85, 137, 10.1111/j.1432-1033.1978.tb12221.x Ortel, 1984, Structural model of human ceruloplasmin based on internal triplication, hydrophilic/hydrophobic character, and secondary structure of domains, Proc. Natl. Acad. Sci. U.S.A., 81, 4761, 10.1073/pnas.81.15.4761 Page, 1999, Natural engineering principles of electron tunneling in biological oxidation–reduction, Nature, 402, 47, 10.1038/46972 Paice, 2002, Pilot plant bleaching trials with laccase and mediator, Prog. Biotechnol., 21, 203, 10.1016/S0921-0423(02)80022-3 Palmer, 2002, Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p, Biochemistry, 41, 6438, 10.1021/bi011979j Palmer, 2003, Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site, Inorg. Chem., 42, 4006, 10.1021/ic026099n Perbandt, 2003, The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity, Biochemistry, 42, 6341, 10.1021/bi020672x Petersen, 1999, Continuous indirect electrochemical regeneration of galactose oxidase, Bioorg. Med. Chem., 7, 2203, 10.1016/S0968-0896(99)00152-2 Petersen, 1978, Steady-state kinetics of laccase from Rhus vernicifera, Biochim. Biophys. Acta, 526, 85, 10.1016/0005-2744(78)90292-9 Pinho, 2004, Two azurins with unusual redox and spectroscopic properties isolated from the Pseudomonas chlororaphis strains DSM 50083T and DSM 50135, J. Inorg. Biochem., 98, 276, 10.1016/j.jinorgbio.2003.10.023 Piontek, 2002, Crystal structure of a laccase from the fungus Trametes versicolor at 1.90Å resolution containing a full complement of coppers, J. Biol. Chem., 277, 37663, 10.1074/jbc.M204571200 Razumas, 1986, Electrochemical conversion of lactoperoxidase, ceruloplasmin and alkaline phosphatase on mercury electrodes, Bioelectrochem. Bioenerg., 15, 407, 10.1016/0302-4598(86)85028-0 Reid, 1941, Relation of Vitamin C to cell size in the growing region of the primary root of cowpea seedlings, Am. J. Bot., 28, 410, 10.2307/2436818 Reinhammar, 1984, Laccase, Copper Proteins Copper Enzymes, 3, 1 Reinhammar, 1971, Electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation–reduction titrations, Eur. J. Biochem., 18, 463, 10.1111/j.1432-1033.1971.tb01264.x Reinhammar, 1972, Oxidation–reduction potentials of the electron acceptors in laccases and stellacyanin, Biochim. Biophys. Acta, 275, 245, 10.1016/0005-2728(72)90045-X Reiss, 1929, The potential of the arrest of multiplication of the sea urchin egg, Arch. Phys. Biol., 7, 80 Rodriguez-Lopez, 1992, Analysis of a kinetic model for melanin biosynthesis pathway, J. Biol. Chem., 267, 3801, 10.1016/S0021-9258(19)50597-X Rogers, 2001, Posttranslationally modified tyrosines from galactose oxidase and cytochrome c oxidase, Adv. Protein Chem., 58, 387, 10.1016/S0065-3233(01)58009-2 Rogers, 2000, Galactose oxidase pro-sequence cleavage and cofactor assembly are self-processing reactions, J. Am. Chem. Soc., 122, 990, 10.1021/ja993385y Rorabacher, 2004, Electron transfer by copper centers, Chem. Rev., 104, 651, 10.1021/cr020630e Ruzgas, 1995, Kinetic models of horseradish peroxidase action on a graphite electrode, J. Electroanal. Chem., 391, 41, 10.1016/0022-0728(95)03930-F Ruzgas, 1996, Peroxidase-modified electrodes: fundamentals and application, Anal. Chim. Acta, 330, 123, 10.1016/0003-2670(96)00169-9 Rydén, 1976, Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase), Biochemistry, 15, 3411, 10.1021/bi00661a003 Sakurai, 1996, Cyclic voltammetry of cucumber ascorbate oxidase, Chem. Lett., 481, 10.1246/cl.1996.481 Sakurai, 1996, Reduction and oxidation processes of blue copper proteins, azurin, pseudoazurin, umecyanin, stellacyanin, plantacyanin, and plastocyanin approached by cyclic and potential step voltammetries, Bull. Chem. Soc. Jpn., 69, 2855, 10.1246/bcsj.69.2855 Salvato, 1990, Hemocyanins: molecular architecture, structure and reactivity of the binuclear copper active site, Life Chem. Rep., 8, 1 Santucci, 1998, Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode, Biochem. J., 332, 611, 10.1042/bj3320611 Schmidt, 1987, Structure and electrochemistry of oxidoreductases, Phil. Trans. R. Soc. Lond. B, 316, 73, 10.1098/rstb.1987.0018 Schneider, 1999, Characterization of a Coprinus cinereus laccase, Enzyme Microb. Tech., 25, 502, 10.1016/S0141-0229(99)00085-X Service, 2002, Biofuel cells, Science, 296, 1223, 10.1126/science.296.5571.1223 Shimizu, 1999, Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands, Biochemistry, 38, 3034, 10.1021/bi9819531 Shin, 2000, Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus, Arch. Biochem. Biophys., 384, 109, 10.1006/abbi.2000.2083 Shleev, S., El Kasmi, A., Ruzgas, T., Gorton, L., 2004a. Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode. Electrochem. Commun. 6, 934-939. Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., Ruzgas, T., 2004b. Electrochemically controlled redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at bare gold electrode. Biochem. J., in press. Shleev, S., Jarosz-Wilkolazka, A., Khalunina, A., Morozova, O., Yaropolov, A., Ruzgas, T., Gorton, L., 2004c. Direct heterogeneous electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry, submitted for publication. Shleev, S.V., Morozova, O.V., Nikitina, O.V., Gorshina, E.S., Rusinova, T.V., Serezhenkov, V.A., Burbaev, D.S., Gazaryan, I.G., Yaropolov, A.I., 2004d. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, in press. Shlev, 2003, Spectral and electrochemical study of laccases from basidiomycetes, Moscow Univ. Chem. Bull., 44, 35 Shoham, 1995, A bilirubin biosensor based on a multilayer network enzyme electrode, Biosens. Bioelectron., 10, 341, 10.1016/0956-5663(95)96852-P Solomon, E.I., Szilagyi, R.K., DeBeer George, S., Basumallick, L., 2004. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104, 419–458. Solomon, 1992, Electronic structures of active sites in copper proteins: contributions to reactivity, Chem. Rev., 92, 521, 10.1021/cr00012a003 Solomon, 1996, Multicopper oxidases and oxygenases, Chem. Rev., 96, 2563, 10.1021/cr950046o Stephens, 1996, Protein control of redox potentials of iron–sulfur proteins, Chem. Rev., 96, 2491, 10.1021/cr950045w Stigter, 1996, Electron transfer between galactose oxidase and an electrode via a redox polymer network, Biotechnol. Technol., 10, 469, 10.1007/BF00159507 Stoeva, 1997, Multidomain structure of the Rapana thomasiana (gastropod) hemocyanin structural subunit RHSS1, Comp. Biochem. Phys. B, 118B, 927, 10.1016/S0305-0491(97)00284-8 Stubbe, 1998, Protein radicals in enzyme catalysis, Chem. Rev., 98, 705, 10.1021/cr9400875 Studnickova, 1991, The electrochemical behavior of copper proteins using differential pulse polarography, Bioelectrochem. Bioenerg., 25, 109, 10.1016/0302-4598(91)87023-A Sucheta, 1992, Diode-like behavior of a mitochondrial electron-transport enzyme, Nature, 356, 361, 10.1038/356361a0 Sucheta, 1993, Reversible electrochemistry of fumarate reductase immobilized on an electrode surface, Biochemistry, 32, 5455, 10.1021/bi00071a023 Surma-Slusarska, 2001, TCF bleaching of kraft pulps with laccase and xylanase, J. Wood Chem. Technol., 21, 361, 10.1081/WCT-100108331 Takahama, 1994, Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases, Plant Cell Physiol., 35, 593, 10.1093/oxfordjournals.pcp.a078634 Takahashi, 1984, Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule, Proc. Natl. Acad. Sci. U.S.A., 81, 390, 10.1073/pnas.81.2.390 Tarasevich, 1979, Ways of using enzymes for acceleration of electrochemical reactions, Bioelectrochem. Bioenerg., 6, 587, 10.1016/0302-4598(79)80027-6 Tarasevich, 2001, Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes, Russ. J. Electrochem., 37, 833, 10.1023/A:1016791120848 Tarasevich, 1979, Electrocatalysis of a cathodic oxygen reduction by laccase, Bioelectrochem. Bioenerg., 6, 393, 10.1016/0302-4598(79)80006-9 Thuesen, 1998, Cyclic voltammetry and electrocatalysis of the blue copper oxidase Polyporus versicolor laccase, Acta Chem. Scand., 52, 555, 10.3891/acta.chem.scand.52-0555 Tkac, J., Ruzgas, T., Whittaker, J.W., 2004a. Direct electrode transfer reactions of galactose oxidase on modified gold electrodes, in manuscript. Tkac, 2002, Indirect evidence of direct electron communication between the active site of galactose oxidase and a graphite electrode, Bioelectrochemistry, 56, 23, 10.1016/S1567-5394(02)00043-9 Tsujimura, 2001, Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase, Enzyme Microb. Technol., 29, 225, 10.1016/S0141-0229(01)00374-X Tsujimura, 2004, Kinetic study of direct bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes, Electrochemistry (Tokyo), 72, 437, 10.5796/electrochemistry.72.437 Tsujimura, 2001, Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH, Phys. Chem. Chem. Phys., 3, 1331, 10.1039/b009539g Tsujimura, 2003, Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH, Electrochem. Commun., 5, 138, 10.1016/S1388-2481(03)00003-1 Tsukihara, 1995, Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A, Science, 269, 1069, 10.1126/science.7652554 Updike, 1967, The enzyme electrode, Nature, 214, 986, 10.1038/214986a0 Van Holde, 1995, Hemocyanins, Adv. Protein Chem., 47, 1, 10.1016/S0065-3233(08)60545-8 Vertegel, 2004, Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme, Langmuir, 20, 6800, 10.1021/la0497200 Volbeda, 1989, Crystal structure of hexameric hemocyanin from Panulirus interruptus refined at 3.2Å resolution, J. Mol. Biol., 209, 249, 10.1016/0022-2836(89)90276-3 Wachter, 1998, Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase, Biochim. Biophys. Acta, 1384, 43, 10.1016/S0167-4838(97)00209-4 Wang, 2001, Glucose biosensors: 40 years of advances and challenges, Electroanalysis, 13, 983, 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-# White, 1965, Ascorbic acid oxidase and ascorbic acid oxygenase of Myrothecium verrucaria, Arch. Biochem. Biophys., 110, 448, 10.1016/0003-9861(65)90436-4 Whittaker, 2003, Free radical catalysis by galactose oxidase, Chem. Rev., 103, 2347, 10.1021/cr020425z Whittaker, 2003, Cu(I)-dependent biogenesis of the galactose oxidase redox cofactor, J. Biol. Chem., 278, 22090, 10.1074/jbc.M300112200 Whittaker, 1998, Radical copper oxidases, one electron at a time, Pure Appl. Chem., 70, 903, 10.1351/pac199870040903 Whittaker, 1988, The active site of galactose oxidase, J. Biol. Chem., 263, 6074, 10.1016/S0021-9258(18)68751-4 Willner, 2003, Biolectronics: development of biosensors, biofuel-cells and circuitry, NATO Sci. Ser. II: Math. Phys. Chem., 96, 311 Wong, 1999, Laccase-catalyzed decolorization of synthetic dyes, Water Res., 33, 3512, 10.1016/S0043-1354(99)00066-4 Woodbury, 1986, Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone, Biochim. Biophys. Acta, 851, 6, 10.1016/0005-2728(86)90243-4 Wright, 2001, Autoredox interconversion of two galactose oxidase forms GOaseox and GOasesemi with and without dioxygen, Inorg. Chem., 40, 2528, 10.1021/ic0011516 Wright, 2001, Interconversion of Cu(I) and Cu(II) forms of galactose oxidase: comparison of reduction potentials, J. Inorg. Biochem., 85, 237, 10.1016/S0162-0134(01)00214-8 Wynn, 1983, Fluorescence associated with the type 3 copper center of laccase, FEBS Lett., 156, 23, 10.1016/0014-5793(83)80240-3 Xu, 1996, A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability, Biochim. Biophys. Acta, 1292, 303, 10.1016/0167-4838(95)00210-3 Xu, 1999, Targeted mutations in a Trametes villosa laccase, J. Biol. Chem., 274, 12372, 10.1074/jbc.274.18.12372 Xu, 1998, Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile, Biochem. J., 334, 63, 10.1042/bj3340063 Xu, 2000, Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds, Appl. Environ. Microbiol., 66, 2052, 10.1128/AEM.66.5.2052-2056.2000 Yamaguchi, 1995, Electrochemical characterization of galactose oxidase coupled with ferrocene derivatives, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 63, 1179, 10.5796/kogyobutsurikagaku.63.1179 Yaropolov, 1979, Electroreduction of hydrogen peroxide on an electrode with Immobilized peroxidase, Dokl. Akad. Nauk. SSSR, 249, 1399 Yaropolov, 1994, Laccase, Appl. Biochem. Biotechnol., 49, 257, 10.1007/BF02783061 Yaropolov, 1986, Mechanism of laccase activation in pre-steady-state reaction stage, Moscow Univ. Chem. Bull., 27, 93 Yaropolov, 1996, Electrochemical properties of some copper-containing oxidases, Bioelectrochem. Bioener., 40, 49, 10.1016/0302-4598(96)01919-8 Ye, 1997, Direct electrochemical redox of tyrosinase at silver electrodes, Talanta, 44, 831, 10.1016/S0039-9140(96)02121-2 Yeh, 1977, Reversible electrode reaction of cytochrome c, Chem. Lett., 1145, 10.1246/cl.1977.1145 Yoon, 2004, Electrochemical studies of immobilized laccases on the modified-gold electrodes, J. Korean Electrochem. Soc., 7, 26, 10.5229/JKES.2004.7.1.026 Yoshida, 1883, Chemistry of lacquer urushi, J. Chem. Soc., 43, 472, 10.1039/CT8834300472 Zaitsev, 1996, The three-dimensional structure of human ceruloplasmin at 3.0Å resolution, Fold. Des., 1, 71 Zhang, 2002, Electronic properties of functional biomolecules at metal/aqueous solution interfaces, J. Phys. Chem. B, 106, 1131, 10.1021/jp0129941 Zhang, 2004, Detection of approx. 103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O2 as the substrate, Anal. Chem., 76, 4093, 10.1021/ac0495034