TLR4, but Not TLR2, Signals Autoregulatory Apoptosis of Cultured Microglia: A Critical Role of IFN-β as a Decision Maker
Tóm tắt
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam3Cys-Ser-Lys4, peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-β expression: while TLR4 agonist induced the activation of IRF-3/IFN-β pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-κB activation and NO production in microglia. Neutralizing Ab against IFN-β attenuated TLR4-mediated microglial apoptosis. IFN-β alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-β, indicating that IFN-β production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-β production, which may act as an apoptotic sensitizer.
Từ khóa
Tài liệu tham khảo
Underhill, D. M.. 2003. Toll-like receptors: networking for success. Eur. J. Immunol. 33: 1767-1775.
Sabroe, I., R. C. Read, M. K. Whyte, D. H. Dockrell, S. N. Vogel, S. K. Dower. 2003. Toll-like receptors in health and disease: complex questions remain. J. Immunol. 171: 1630-1635.
Beutler, B.. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430: 257-263.
Kopp, E., R. Medzhitov. 2003. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15: 396-401.
Yamamoto, M., K. Takeda, S. Akira. 2004. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40: 861-868.
O’Neill, L. A., K. A. Fitzgerald, A. G. Bowie. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24: 286-290.
Vogel, S. N., K. A. Fitzgerald, M. J. Fenton. 2003. TLRs: differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3: 466-477.
Aliprantis, A. O., R. B. Yang, M. R. Mark, S. Suggett, B. Devaux, J. D. Radolf, G. R. Klimpel, P. Godowski, A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285: 736-739.
Aliprantis, A. O., R. B. Yang, D. S. Weiss, P. Godowski, A. Zychlinsky. 2000. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19: 3325-3336.
Lopez, M., L. M. Sly, Y. Luu, D. Young, H. Cooper, N. E. Reiner. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J. Immunol. 170: 2409-2416.
Into, T., K. Kiura, M. Yasuda, H. Kataoka, N. Inoue, A. Hasebe, K. Takeda, S. Akira, K. Shibata. 2004. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-κB activation. Cell. Microbiol. 6: 187-199.
Haase, R., C. J. Kirschning, A. Sing, P. Schrottner, K. Fukase, S. Kusumoto, H. Wagner, J. Heesemann, K. Ruckdeschel. 2003. A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J. Immunol. 171: 4294-4303.
Ruckdeschel, K., G. Pfaffinger, R. Haase, A. Sing, H. Weighardt, G. Hacker, B. Holzmann, J. Heesemann. 2004. Signaling of apoptosis through TLRs critically involves Toll/IL-1 receptor domain-containing adapter inducing IFN-β, but not MyD88, in bacteria-infected murine macrophages. J. Immunol. 173: 3320-3328.
Hsu, L. C., J. M. Park, K. Zhang, J. L. Luo, S. Maeda, R. J. Kaufman, L. Eckmann, D. G. Guiney, M. Karin. 2004. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428: 341-345.
Jones, L. L., R. B. Banati, M. B. Graeber, L. Bonfanti, G. Raivich, G. W. Kreutzberg. 1997. Population control of microglia: does apoptosis play a role?. J. Neurocytol. 26: 755-770.
Rivest, S.. 2003. Molecular insights on the cerebral innate immune system. Brain Behav. Immun. 17: 13-19.
Lee, S. J., S. Lee. 2002. Toll-like receptors and inflammation in the CNS. Curr. Drug Targets Inflamm. Allergy 1: 181-191.
Bowman, C. C., A. Rasley, S. L. Tranguch, I. Marriott. 2003. Cultured astrocytes express Toll-like receptors for bacterial products. Glia 43: 281-291.
Ishida, I., H. Kubo, S. Suzuki, T. Suzuki, S. Akashi, K. Inoue, S. Maeda, H. Kikuchi, H. Sasaki, T. Kondo. 2002. Hypoxia diminishes Toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J. Immunol. 169: 2069-2075.
Visintin, A., A. Mazzoni, J. H. Spitzer, D. H. Wyllie, S. K. Dower, D. M. Segal. 2001. Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166: 249-255.
Muzio, M., D. Bosisio, N. Polentarutti, G. D’Amico, A. Stoppacciaro, R. Mancinelli, C. van’t Veer, G. Penton-Rol, L. P. Ruco, P. Allavena, A. Mantovani. 2000. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 164: 5998-6004.
Stoll, G., S. Jander. 1999. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. 58: 233-247.
Gehrmann, J., Y. Matsumoto, G. W. Kreutzberg. 1995. Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20: 269-287.
Streit, W. J., S. A. Walter, N. A. Pennell. 1999. Reactive microgliosis. Prog. Neurobiol. 57: 563-581.
Gonzalez-Scarano, F., G. Baltuch. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22: 219-240.
Von Knethen, A., A. Lotero, B. Brune. 1998. Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-induced gene expression. Oncogene 17: 387-394.
Albina, J. E., S. Cui, R. B. Mateo, J. S. Reichner. 1993. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150: 5080-5085.
Adler, B., H. Adler, T. W. Jungi, E. Peterhans. 1995. Interferon-α primes macrophages for lipopolysaccharide-induced apoptosis. Biochem. Biophys. Res. Commun. 215: 921-927.
Liu, B., K. Wang, H. M. Gao, B. Mandavilli, J. Y. Wang, J. S. Hong. 2001. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77: 182-189.
Lee, P., J. Lee, S. Kim, H. Yagita, M. S. Lee, S. Y. Kim, H. Kim, K. Suk. 2001. NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res. 892: 380-385.
Kingham, P. J., M. L. Cuzner, J. M. Pocock. 1999. Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J. Neurochem. 73: 538-547.
Suk, K., J. Lee, J. Hur, Y. S. Kim, M. S. Lee, S. H. Cha, S. Y. Kim, H. Kim. 2001. Activation-induced cell death of rat astrocytes. Brain Res. 900: 342-347.
Lee, J., J. Hur, P. Lee, J. Y. Kim, N. Cho, M. S. Lee, S. Y. Kim, H. Kim, K. Suk. 2001. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells: initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J. Biol. Chem. 276: 32956-32965.
Lee, H., S. Cha, M. S. Lee, G. J. Cho, W. S. Choi, K. Suk. 2003. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J. Immunol. 171: 5802-5811.
Hajjar, A. M., D. S. O’Mahony, A. Ozinsky, D. M. Underhill, A. Aderem, S. J. Klebanoff, C. B. Wilson. 2001. Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166: 15-19.
Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811-815.
Rhee, S. H., D. Hwang. 2000. Murine Toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF κB and expression of the inducible cyclooxygenase. J. Biol. Chem. 275: 34035-34040.
Burns, K., F. Martinon, C. Esslinger, H. Pahl, P. Schneider, J. L. Bodmer, F. Di Marco, L. French, J. Tschopp. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273: 12203-12209.
Dupraz, P., S. Cottet, F. Hamburger, W. Dolci, E. Felley-Bosco, B. Thorens. 2000. Dominant negative MyD88 proteins inhibit interleukin-1β/interferon-γ-mediated induction of nuclear factor κB-dependent nitrite production and apoptosis in β cells. J. Biol. Chem. 275: 37672-37678.
Horng, T., G. M. Barton, R. Medzhitov. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2: 835-841.
Mizushima, S., S. Nagata. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18: 5322.
Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, S. Akira. 2002. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169: 6668-6672.
Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443-451.
Aloisi, F., R. De Simone, S. Columba-Cabezas, G. Levi. 1999. Opposite effects of interferon-γ and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J. Neurosci. Res. 56: 571-580.
Blasi, E., R. Barluzzi, V. Bocchini, R. Mazzolla, F. Bistoni. 1990. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27: 229-237.
Iwamura, T., M. Yoneyama, K. Yamaguchi, W. Suhara, W. Mori, K. Shiota, Y. Okabe, H. Namiki, T. Fujita. 2001. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6: 375-388.
Hsu, H., H. B. Shu, M. G. Pan, D. V. Goeddel. 1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84: 299-308.
Shu, H. B., D. R. Halpin, D. V. Goeddel. 1997. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6: 751-763.
Lee, K.-Y., W. Chang, D. Qiu, P. N. Kao, G. D. Rosen. 1999. PG490 (triptolide) cooperates with tumor necrosis factor-α to induce apoptosis in tumor cells. J. Biol. Chem. 274: 13451-13455.
Yoneyama, M., W. Suhara, Y. Fukuhara, M. Fukuda, E. Nishida, T. Fujita. 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17: 1087-1095.
Schreiber, E., P. Matthias, M. M. Muller, W. Schaffner. 1989. Rapid detection of octamer binding proteins with ‘mini-extracts,’ prepared from a small number of cells. Nucleic Acids Res. 17: 6419.
Matsuguchi, T., T. Musikacharoen, T. Ogawa, Y. Yoshikai. 2000. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J. Immunol. 165: 5767-5772.
Faure, E., L. Thomas, H. Xu, A. Medvedev, O. Equils, M. Arditi. 2001. Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J. Immunol. 166: 2018-2024.
Donjerkovic, D., D. W. Scott. 2000. Activation-induced cell death in B lymphocytes. Cell Res. 10: 179-192.
Suk, K., S. Y. Kim, H. Kim. 2002. Essential role of caspase-11 in activation-induced cell death of rat astrocytes. J. Neurochem. 80: 230-238.
Gao, J. J., M. B. Filla, M. J. Fultz, S. N. Vogel, S. W. Russell, W. J. Murphy. 1998. Autocrine/Paracrine IFN-α/β mediates the lipopolysaccharide-induced activation of transcription factor Stat1α in mouse macrophages: pivotal role of Stat1α in induction of the inducible nitric oxide synthase gene. J. Immunol. 161: 4803-4810.
Toshchakov, V., B. W. Jones, P. Y. Perera, K. Thomas, M. J. Cody, S. Zhang, B. R. Williams, J. Major, T. A. Hamilton, M. J. Fenton, S. N. Vogel. 2002. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3: 392-398.
Schauvliege, R., J. Vanrobaeys, P. Schotte, R. Beyaert. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-γ requires nuclear factor-κB and signal transducer and activator of transcription (STAT) 1. J. Biol. Chem. 277: 41624-41630.
Kim, M. O., Q. Si, J. N. Zhou, R. G. Pestell, C. F. Brosnan, J. Locker, S. C. Lee. 2002. Interferon-β activates multiple signaling cascades in primary human microglia. J. Neurochem. 81: 1361-1371.
Wang, S., M. Miura, Y. Jung, H. Zhu, V. Gagliardini, L. Shi, A. H. Greenberg, J. Yuan. 1996. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271: 20580-20587.
Kang, S. J., S. Wang, H. Hara, E. P. Peterson, S. Namura, S. Amin-Hanjani, Z. Huang, A. Srinivasan, K. J. Tomaselli, N. A. Thornberry, M. A. Moskowitz, J. Yuan. 2000. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149: 613-622.
Wang, S., M. Miura, Y. K. Jung, H. Zhu, E. Li, J. Yuan. 1998. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509.
Shibata, M., S. Hisahara, H. Hara, T. Yamawaki, Y. Fukuuchi, J. Yuan, H. Okano, M. Miura. 2000. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J. Clin. Invest. 106: 643-653.
Hisahara, S., J. Yuan, T. Momoi, H. Okano, M. Miura. 2001. Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune-mediated demyelination. J. Exp. Med. 193: 111-122.
Park, E. J., S. Y. Park, E. H. Joe, I. Jou. 2003. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J. Biol. Chem. 278: 14747-14752.
Shishodia, S., B. B. Aggarwal. 2004. Nuclear factor-κB: a friend or a foe in cancer?. Biochem. Pharmacol. 68: 1071-1080.
Lin, K. I., J. A. DiDonato, A. Hoffmann, J. M. Hardwick, R. R. Ratan. 1998. Suppression of steady-state, but not stimulus-induced NF-κB activity inhibits α virus-induced apoptosis. J. Cell Biol. 141: 1479-1487.
Watters, J. J., J. A. Sommer, Z. A. Pfeiffer, U. Prabhu, A. N. Guerra, P. J. Bertics. 2002. A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1β production. J. Biol. Chem. 277: 9077-9087.
Applequist, S. E., R. P. Wallin, H. G. Ljunggren. 2002. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 14: 1065-1074.
Olson, J. K., S. D. Miller. 2004. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173: 3916-3924.
Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088.
Nomura, F., S. Akashi, Y. Sakao, S. Sato, T. Kawai, M. Matsumoto, K. Nakanishi, M. Kimoto, K. Miyake, K. Takeda, S. Akira. 2000. Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. J. Immunol. 164: 3476-3479.
Pfeiffer, A., A. Bottcher, E. Orso, M. Kapinsky, P. Nagy, A. Bodnar, I. Spreitzer, G. Liebisch, W. Drobnik, K. Gempel, et al 2001. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31: 3153-3164.
Triantafilou, M., K. Triantafilou. 2002. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304.
Ozinsky, A., D. M. Underhill, J. D. Fontenot, A. M. Hajjar, K. D. Smith, C. B. Wilson, L. Schroeder, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766-13771.