Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes
Tài liệu tham khảo
Bourg, 2010, Isotopic mass dependence of metal cation diffusion coefficients in liquid water, Geochim. Cosmochim. Acta, 74, 2249, 10.1016/j.gca.2010.01.024
Chan, 1992, Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans, Earth Planet. Sci. Lett., 108, 151, 10.1016/0012-821X(92)90067-6
Chan, 2002, Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A, Earth Planet. Sci. Lett., 201, 187, 10.1016/S0012-821X(02)00707-0
Chen, 2019, High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight, J. Anal. At. Spectrom., 34, 160, 10.1039/C8JA00303C
Coogan, 2018, Low-temperature alteration of the seafloor: impacts on ocean chemistry, Annu. Rev. Earth Planet. Sci. Lett., 46, 21, 10.1146/annurev-earth-082517-010027
Coogan, 2018, Temperature dependence of chemical exchange during seafloor weathering: insights from the Troodos ophiolite, Geochim. Cosmochim. Acta, 243, 24, 10.1016/j.gca.2018.09.025
Dehghanpour, 2013, Spontaneous imbibition of brine and oil in gas shales: effect of water adsorption and resulting microfractures, Energy Fuel, 27, 3039, 10.1021/ef4002814
Du, 2019, Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone, Geochem. Perspect. Lett., 11, 1, 10.7185/geochemlet.1916
Edmond, 1979, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data, Earth Planet. Sci. Lett., 46, 1, 10.1016/0012-821X(79)90061-X
Fujioka, 2002, Morphology and origin of the Challenger deep in the Southern Mariana Trench, Geophys. Res. Lett., 29, 1372, 10.1029/2001GL013595
Gale, 2013, The mean composition of ocean ridge basalts, Geochem. Geophys. Geosyst., 14, 489, 10.1029/2012GC004334
Gao, 2012, Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2, Geostand. Geoanal. Res., 36, 75, 10.1111/j.1751-908X.2011.00117.x
Guo, 2022, Copper Isotopic Fractionation during Seafloor Alteration: Insights from Altered Basalts in the Mariana and Yap Trenches, J. Geophys. Res. Solid Earth, 127, 10.1029/2021JB023597
Hart, 1982, The control of alkalies and uranium in seawater by ocean crust alteration, Earth Planet. Sci. Lett., 58, 202, 10.1016/0012-821X(82)90194-7
Hart, 1974, Sea floor basalt alteration: some chemical and Sr isotopic effects, Contrib. Mineral. Petrol., 44, 219, 10.1007/BF00413167
Hekinian, 1971, Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the eastern Pacific Ocean, Mar. Geol., 11, 77, 10.1016/0025-3227(71)90068-5
Hille, 2019, Homogeneous and heavy potassium isotopic composition of global oceans, Sci. Bull., 64, 1740, 10.1016/j.scib.2019.09.024
Hofmann, 1982, Mantle plumes from ancient oceanic crust, Earth Planet. Sci. Lett., 57, 421, 10.1016/0012-821X(82)90161-3
Hu, 2018, High-precision analysis of potassium isotopes by HR-MC-ICPMS, Chem. Geol., 493, 100, 10.1016/j.chemgeo.2018.05.033
Hu, 2020, Potassium isotopic heterogeneity in subducting oceanic plates, Sci. Adv., 6, eabb2472, 10.1126/sciadv.abb2472
Huang, 2018, Magnesium isotopic composition of altered oceanic crust and the global Mg cycle, Geochim. Cosmochim. Acta, 238, 357, 10.1016/j.gca.2018.07.011
Johnson, 1990, The first evidence for MORB-like lavas from the outer Mariana forearc: geochemistry, petrography and tectonic implications, Earth Planet. Sci. Lett., 100, 304, 10.1016/0012-821X(90)90193-2
Li, 2015, A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry, Anal. Methods, 7, 4793, 10.1039/C4AY02896A
Li, 2016, Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry, J. Anal. At. Spectrom., 31, 1150, 10.1039/C5JA00477B
Li, 2021, Potassium isotopic fractionation during clay adsorption, Geochim. Cosmochim. Acta, 304, 160, 10.1016/j.gca.2021.04.027
Marschall, 2017, The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle, Geochim. Cosmochim. Acta, 207, 102, 10.1016/j.gca.2017.03.028
McCulloch, 1981, Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section: evidence from the Samail ophiolite, J. Geophys. Res., 86, 2721, 10.1029/JB086iB04p02721
Parendo, 2017, K isotopes as a tracer of seafloor hydrothermal alteration, Proc. Natl. Acad. Sci., 114, 1827, 10.1073/pnas.1609228114
Parendo, 2022, Across-arc variations in K-isotope ratios in lavas of the Izu arc: evidence for progressive depletion of the slab in K and similarly mobile elements, Earth Planet. Sci. Lett., 578, 10.1016/j.epsl.2021.117291
Peccerillo, 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol., 58, 63, 10.1007/BF00384745
Penniston-Dorland, 2017, Lithium isotope geochemistry, Rev. Mineral. Geochem., 82, 165, 10.2138/rmg.2017.82.6
Pichler, 1999, Low-temperature alteration of dredged volcanics from the Southern Chile Ridge: additional information about early stages of seafloor weathering, Mar. Geol., 159, 155, 10.1016/S0025-3227(99)00008-0
Richter, 1999, Isotope fractionation by diffusion in molten oxides, Geochim. Cosmochim. Acta, 63, 2853, 10.1016/S0016-7037(99)00164-7
Richter, 2009, Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion, Chem. Geol., 258, 92, 10.1016/j.chemgeo.2008.06.011
Richter, 2014, Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes, Geochim. Cosmochim. Acta, 126, 352, 10.1016/j.gca.2013.11.008
Richter, 2017, Lithium isotope fractionation by diffusion in minerals part 2: Olivine, Geochim. Cosmochim. Acta, 219, 124, 10.1016/j.gca.2017.09.001
Santiago Ramos, 2020, Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater, Earth Planet. Sci. Lett., 541, 10.1016/j.epsl.2020.116290
Scott, 1976, Initial submarine alteration of basaltic pillow lavas: microprobe study, Am. J. Sci., 276, 480, 10.2475/ajs.276.4.480
Shervais, 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett., 59, 101, 10.1016/0012-821X(82)90120-0
Staudigel, 1983, Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget, Geochim. Cosmochim. Acta, 47, 337, 10.1016/0016-7037(83)90257-0
Sun, 2016, Lithium isotope fractionation during incongruent melting: Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China, Chem. Geol., 439, 71, 10.1016/j.chemgeo.2016.06.004
Tomascak, 2008, Lithium isotopes in global mid-ocean ridge basalts, Geochim. Cosmochim. Acta, 72, 1626, 10.1016/j.gca.2007.12.021
Tomascak, 2016, 5, 10.1007/978-3-319-01430-2_2
Tuller-Ross, 2019, Potassium isotope systematics of oceanic basalts, Geochim. Cosmochim. Acta, 259, 144, 10.1016/j.gca.2019.06.001
Verney-Carron, 2015, Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland), Earth Planet. Sci. Lett., 411, 62, 10.1016/j.epsl.2014.11.047
Von Damm, 1985, Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta, 49, 2197, 10.1016/0016-7037(85)90222-4
Watkins, 2017, Kinetic fractionation of non-traditional stable isotopes by diffusion and crystal growth reactions, Rev. Mineral. Geochem., 82, 85, 10.2138/rmg.2017.82.4
Weis, 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS, Geochem. Geophys. Geosyst., 7, Q08006, 10.1029/2006GC001283
Xu, 2019, Potassium isotopic compositions of international geological reference materials, Chem. Geol., 513, 101, 10.1016/j.chemgeo.2019.03.010
Zhang, 2022, Diffusive fractionation of K isotopes in molten basalts, Earth Planet. Sci. Lett., 581, 10.1016/j.epsl.2022.117405
Zhang, 2019, New discrimination diagrams for basalts based on big data research, Big Earth Data, 3, 45, 10.1080/20964471.2019.1576262