Gold nanoparticles in biological optical imaging
Tài liệu tham khảo
Jain, 2006, J. Phys. Chem. B, 110, 7238, 10.1021/jp057170o
Daniel, 2004, Chem. Rev., 104, 293, 10.1021/cr030698+
Faraday, 1857, Philos. Trans. R. Soc. London, 147, 145, 10.1098/rstl.1857.0011
Nikoobakht, 2003, Chem. Mater., 15, 1957, 10.1021/cm020732l
Murphy, 2005, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846
Dreaden, 2012, Chem. Soc. Rev., 41, 2740, 10.1039/C1CS15237H
Hu, 2006, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h
Ali, 2012, Langmuir, 28, 9807, 10.1021/la301387p
Sun, 2002, Science, 298, 2176, 10.1126/science.1077229
Neumann, 2013, ACS Nano, 7, 42, 10.1021/nn304948h
Murphy, 2008, Chem. Commun. (Camb.), 544, 10.1039/B711069C
Ali, 2016, Int. J. Nanomed., 11, 4849, 10.2147/IJN.S109470
Ali, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, E5655, 10.1073/pnas.1703151114
Turner, 2008, Nature, 454, 981, 10.1038/nature07194
Huang, 2010, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002
Oyelere, 2007, Bioconjug. Chem., 18, 1490, 10.1021/bc070132i
Dam, 2012, ACS Nano, 6, 3318, 10.1021/nn300296p
Eustis, 2006, Chem. Soc. Rev., 35, 209, 10.1039/B514191E
Murphy, 2008, Acc. Chem. Res., 41, 1721, 10.1021/ar800035u
Bardhan, 2011, Acc. Chem. Res., 44, 936, 10.1021/ar200023x
Cho, 2010, Trends Mol. Med., 16, 561, 10.1016/j.molmed.2010.09.004
Maier, 2001, Adv. Mater., 13, 1501-+, 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
van Dijk, 2006, Phys. Chem. Chem. Phys., 8, 3486, 10.1039/b606090k
Myroshnychenko, 2008, Chem. Soc. Rev., 37, 1792, 10.1039/b711486a
Nie, 1997, Science, 275, 1102, 10.1126/science.275.5303.1102
Opilik, 2013, Annu. Rev. Anal. Chem. Palo Alto Calif (Palo Alto Calif), 6, 379, 10.1146/annurev-anchem-062012-092646
Li, 2017, Chem. Soc. Rev., 46, 3962, 10.1039/C7CS00169J
Lakowicz, 2008, Analyst, 133, 1308, 10.1039/b802918k
Bauch, 2014, Plasmonics, 9, 781, 10.1007/s11468-013-9660-5
Gu, 2011, J. Am. Chem. Soc., 133, 5720, 10.1021/ja200603x
Tkachenko, 2004, Bioconjug. Chem., 15, 482, 10.1021/bc034189q
Durr, 2007, Nano Lett., 7, 941, 10.1021/nl062962v
Jain, 2008, Acc. Chem. Res., 41, 1578, 10.1021/ar7002804
Rosman, 2012, Small, 8, 3683, 10.1002/smll.201200853
Wang, 2015, J. Biophotonics
Liu, 2017, Nat. Commun., 8, 15646, 10.1038/ncomms15646
Nan, 2008, ChemPhysChem, 9, 707, 10.1002/cphc.200700839
Schneider, 2013, Opt. Express, 21, 3523, 10.1364/OE.21.003523
Qian, 2010, J. Biomed. Opt., 15, 10.1117/1.3477179
Wan, 2014, Sci. Rep., 4, 4529, 10.1038/srep04529
Rong, 2008, Nano Lett., 8, 3386, 10.1021/nl802058q
Xiong, 2017, ACS Nano, 11, 541, 10.1021/acsnano.6b06591
Riveline, 2001, J. Cell Biol., 153, 1175, 10.1083/jcb.153.6.1175
Stabley, 2011, Nat. Methods, 9, 64, 10.1038/nmeth.1747
Liu, 2013, J. Am. Chem. Soc., 135, 5320, 10.1021/ja401494e
Lee, 2014, Nat. Nanotechnol., 9, 474, 10.1038/nnano.2014.73
Lambertz, 2016, Nano Lett., 16, 3540, 10.1021/acs.nanolett.6b00507
Zhang, 2011, Angew. Chem. Int. Ed. Engl., 50, 6789, 10.1002/anie.201102151
Liu, 2015, Theranostics, 5, 946, 10.7150/thno.11974
SoRelle, 2016, Elife, 5, 10.7554/eLife.16352
Betzer, 2017, ACS Nano, 11, 10883, 10.1021/acsnano.7b04495
Sonnichsen, 2005, Nat. Biotechnol., 23, 741, 10.1038/nbt1100
Cui, 2015, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 7, 387, 10.1002/wnan.1321
Ueno, 2010, Biophys. J., 98, 2014, 10.1016/j.bpj.2010.01.011
Zhang, 2015, Sci. Rep., 5, 11447, 10.1038/srep11447
Cheng, 2017, Nano Res., 10, 1423, 10.1007/s12274-017-1524-4
Chen, 2015, Graduate Theses and Dissertations
Tsunoda, 2008, J. Micro., 232, 207, 10.1111/j.1365-2818.2008.02091.x
Zhu, 2008, SPIE, 3
Salmon, 2003, High-Resolution video-enhanced differential interference contrast light microscopy, 289, 10.1016/S0091-679X(03)72014-7
Ziv, 2007, CSH Protoc., 2007
Stender, 2013, Chem. Rev., 113, 2469, 10.1021/cr300336e
Sun, 2009, Anal. Chem., 81, 9203, 10.1021/ac901623b
Chithrani, 2007, Nano Lett., 7, 1542, 10.1021/nl070363y
Ali, 2017, ACS Nano, 11, 3716, 10.1021/acsnano.6b08345
Zhao, 2017, Opt. Express, 25, 9860, 10.1364/OE.25.009860
Chen, 2013, Opt. Express, 21, 112, 10.1364/OE.21.000112
Gu, 2012, Anal. Chem.
Gu, 2013, ACS Nano, 7, 1658, 10.1021/nn305640y
Chen, 2017, Nat. Commun., 8, 887, 10.1038/s41467-017-01001-9
Augspurger, 2014, Anal. Chem., 86, 1196, 10.1021/ac403347e
Kukura, 2009, Nat. Methods, 6, 923, 10.1038/nmeth.1395
Ortega-Arroyo, 2012, Phys. Chem. Chem. Phys., 14, 15625, 10.1039/c2cp41013c
Mickolajczyk, 2015, Proc Natl Acad Sci U S A, 112, E7186, 10.1073/pnas.1517638112
Andrecka, 2016, vol 581, 517
Mickolajczyk, 2018, bioRxiv
Hsieh, 2014, J. Phys. Chem. B, 118, 1545, 10.1021/jp412203t
Wu, 2016, Sci. Rep., 6, 20542, 10.1038/srep20542
Nedosekin, 2014, Small, 10, 135, 10.1002/smll.201300024
Boyer, 2002, Science, 297, 1160, 10.1126/science.1073765
Wang, 2010, J. Am. Chem. Soc., 132, 16417, 10.1021/ja106506k
Gu, 2012, Nat. Commun., 3, 1030, 10.1038/ncomms2037
Ha, 2013, Chem. Commun. (Camb.), 49, 11038, 10.1039/c3cc46871b
Chen, 2015, Anal. Chem., 87, 4096, 10.1021/acs.analchem.5b00604
Kim, 2017, Anal. Sci., 33, 1021, 10.2116/analsci.33.1021
Kim, 2017, J. Phys. Chem. C, 121, 19975, 10.1021/acs.jpcc.7b06823
Lee, 2017, Nanoscale, 9, 12060, 10.1039/C7NR03969G
Sun, 2012, Anal. Chem., 84, 1134, 10.1021/ac202824v
Chakkarapani, 2018, ACS Nano, 12, 4156, 10.1021/acsnano.8b00025
Sönnichsen, 2005, Nano Lett., 5, 301, 10.1021/nl048089k
Spetzler, 2006, Biochemistry, 45, 3117, 10.1021/bi052363n
Xu, 2014, Anal. Chem., 86, 3397, 10.1021/ac403700u
Xiao, 2010, Anal. Chem., 82, 5268, 10.1021/ac1006848
Enoki, 2015, Anal. Chem., 87, 2079, 10.1021/ac502408c
Kaplan, 2018, Sci. Adv., 4, 10.1126/sciadv.1602170
Chowdary, 2018, Biophys. J., 115, 230, 10.1016/j.bpj.2018.05.026
Ha, 2012, Nano Lett., 12, 4282, 10.1021/nl301972t
Chang, 2010, Proc. Natl. Acad. Sci., 107, 2781, 10.1073/pnas.0910127107
Zhang, 2011, Opt. Express, 19, 2643, 10.1364/OE.19.002643
Tcherniak, 2011, J. Phys. Chem. C, 115, 15938, 10.1021/jp206203s
Zhang, 2013, Anal. Chem., 85, 9433, 10.1021/ac4023956
Behrend, 2004, J. Phys. Chem. B, 108, 10408, 10.1021/jp040125g
Yi, 2016, Analyst, 141, 3526, 10.1039/C6AN00325G
Anthony, 2015, Anal. Methods, 7, 7020, 10.1039/C5AY00522A
Gao, 2018, Langmuir, 34, 1151, 10.1021/acs.langmuir.7b02804
Lee, 2018, ACS Photon., 5, 797, 10.1021/acsphotonics.7b00890
Li, 2010, Nature, 464, 392, 10.1038/nature08907
Wustholz, 2010, J. Am. Chem. Soc., 132, 10903, 10.1021/ja104174m
De Angelis, 2011, Nat. Photonics, 5, 683, 10.1038/nphoton.2011.222
Yang, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 268, 10.1073/pnas.1518980113
Tanwar, 2017, J. Am. Chem. Soc., 139, 17639, 10.1021/jacs.7b10410
Zhan, 2018, Angew. Chem. Int. Ed. Engl., 57, 2846, 10.1002/anie.201712749
Ando, 2011, Nano Lett., 11, 5344, 10.1021/nl202877r
Huang, 2014, Methods, 68, 348, 10.1016/j.ymeth.2014.02.007
Ali, 2016, J. Am. Chem. Soc., 138, 15434, 10.1021/jacs.6b08787
Sun, 2017, Anal. Bioanal. Chem., 409, 4915, 10.1007/s00216-017-0435-2
Lahr, 2014, ACS Sustain. Chem. Eng., 2, 1599, 10.1021/sc500105n
Qian, 2008, Nat. Biotechnol., 26, 83, 10.1038/nbt1377
Wang, 2016, Sci. Rep., 6, 21242, 10.1038/srep21242
Sinha, 2015, Sci. Rep., 5, 8582, 10.1038/srep08582
Kircher, 2012, Nat. Med., 18, 829, 10.1038/nm.2721
Kircher, 2017, Nanomedicine (Lond.), 12, 171, 10.2217/nnm-2016-0385
Stone, 2010, Anal. Chem., 82, 3969, 10.1021/ac100039c
von Maltzahn, 2009, Adv Mater, 21, 3175, 10.1002/adma.200803464
Qian, 2011, Biomaterials, 32, 1601, 10.1016/j.biomaterials.2010.10.058
Kang, 2015, Nano Lett., 15, 1766, 10.1021/nl504444w
Gandra, 2013, Adv Mater, 25, 1022, 10.1002/adma.201203415
GERSTEN, 1981, J. Chem. Phys., 75, 1139, 10.1063/1.442161
Willets, 2017, Chem. Rev., 117, 7538, 10.1021/acs.chemrev.6b00547
Kühn, 2006, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.017402
Yuan, 2013, Angew. Chem. Int. Ed. Engl., 52, 1217, 10.1002/anie.201208125
Xie, 2009, J. Am. Chem. Soc., 131, 888, 10.1021/ja806804u
Wang, 2011, ACS Nano, 5, 4337, 10.1021/nn102752a
Farahani, 2005, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.017402
Kinkhabwala, 2009, Nat. Photonics, 3, 654, 10.1038/nphoton.2009.187
Khatua, 2014, ACS Nano, 8, 4440, 10.1021/nn406434y
Wientjes, 2014, Nat. Commun., 5, 4236, 10.1038/ncomms5236
Akselrod, 2014, Nat. Photon., 8, 835, 10.1038/nphoton.2014.228
Al Balushi, 2013, Biomed. Opt. Express, 4, 1504, 10.1364/BOE.4.001504
Regmi, 2015, Sci. Rep., 5, 15852, 10.1038/srep15852
Kotnala, 2014, Nano Lett., 14, 853, 10.1021/nl404233z
de Torres, 2016, Nano Lett., 16, 6222, 10.1021/acs.nanolett.6b02470
Masuda, 2017, Sci. Rep., 7, 3720, 10.1038/s41598-017-04000-4
Jeynes, 2017, ACS Nano, 11, 12632, 10.1021/acsnano.7b07064
Taylor, 2018, J. Phys. Chem. C Nanomater. Interfaces, 122, 2336, 10.1021/acs.jpcc.7b12473
Feiner-Gracia, 2017, Small, 13, 10.1002/smll.201701631
Jaworska, 2014, Microchim. Ichnoanal. Acta, 182, 119, 10.1007/s00604-014-1307-5
Y. Zhang, Y. Chen, J. Yu, D.J.S. Birch, (2017) 13th IASTED International Conference on Biomedical Engineering (BioMed). https://ieeexplore.ieee.org/document/7893264.
Huang, 2013, Biomaterials, 34, 4643, 10.1016/j.biomaterials.2013.02.063
Jang, 2011, ACS Nano, 5, 1086, 10.1021/nn102722z
Hayashi, 2013, Chem. Commun., 49, 5334, 10.1039/c3cc41876f
Zheng, 2007, Annu. Rev. Phys. Chem., 58, 409, 10.1146/annurev.physchem.58.032806.104546
Chen, 2015, Anal. Chem., 87, 216, 10.1021/ac503636j
Qu, 2015, .
Palmal, 2014, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 6, 102, 10.1002/wnan.1245
Venkatesh, 2014, ACS Appl. Mater. Interfaces, 6, 2185, 10.1021/am405345h
Wang, 2017, ACS Appl. Mater. Interfaces, 9, 17799, 10.1021/acsami.7b04576
Fernandez, 2015, Biomaterials, 43, 1, 10.1016/j.biomaterials.2014.11.045
Chandirasekar, 2016, Colloids Surf. B Biointerfaces, 143, 472, 10.1016/j.colsurfb.2016.03.067
Zhang, 2015, Adv. Funct. Mater., 25, 1314, 10.1002/adfm.201403095
Wang, 2013, Sci. Rep., 3
Zhao, 2015, Anal. Chem., 87, 9998, 10.1021/acs.analchem.5b02614
Yahia-Ammar, 2016, ACS Nano, 10, 2591, 10.1021/acsnano.5b07596
Ntziachristos, 2010, Nat. Methods, 7, 603, 10.1038/nmeth.1483
Denk, 1990, Science, 248, 73, 10.1126/science.2321027
Wang, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 15752, 10.1073/pnas.0504892102
Yuan, 2012, Nanotechnology, 23
Gao, 2014, J. Phys. Chem. C, 118, 13904, 10.1021/jp502038v
Park, 2018, J. Biophoton., 11
Yin, 2017, Nanoscale, 9, 16661, 10.1039/C7NR03847J
Wang, 2017, ACS Nano, 11, 10452, 10.1021/acsnano.7b05645
Alifu, 2017, Mater. Chem. Front., 1, 1746, 10.1039/C7QM00092H
Surender, 2016, Chem, 1, 438, 10.1016/j.chempr.2016.08.011
Popescu, 2011, Biophys. Rev., 3, 155, 10.1007/s12551-011-0054-7
Huang, 1991, Science, 254, 1178, 10.1126/science.1957169
Tang, 2017, Anal. Chem., 89, 9758, 10.1021/acs.analchem.7b01623
Jiang, 2017, Anal. Chem., 89, 2561, 10.1021/acs.analchem.6b04785
Wi, 2017, ACS Nano, 11, 6225, 10.1021/acsnano.7b02337
Gao, 2017, Adv. Mater., 29
Chhetri, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, E4289, 10.1073/pnas.1409321111
Jung, 2011, Nano Lett., 11, 2938, 10.1021/nl2014394
Braz, 2012, J. Biomed. Opt., 17, 10.1117/1.JBO.17.6.066003
Wang, 2012, Science, 335, 1458, 10.1126/science.1216210
Li, 2015, Nanomedicine (Lond.), 10, 299, 10.2217/nnm.14.169
Köker, 2018, Nat. Commun., 9, 607, 10.1038/s41467-018-03046-w
Galanzha, 2017, Nat. Commun., 8, 15528, 10.1038/ncomms15528
Chen, 2017, Nat. Commun., 8, 15782, 10.1038/ncomms15782
Perillo, 2015, Nat. Commun., 6, 7874, 10.1038/ncomms8874
Toprak, 2007, Nano Lett., 7, 2043, 10.1021/nl0709120
Speidel, 2003, Opt. Lett., 28, 69, 10.1364/OL.28.000069
Pavani, 2008, Opt. Express, 16, 22048, 10.1364/OE.16.022048
Huang, 2008, Science, 319, 810, 10.1126/science.1153529
Sun, 2014, Science, 346
Lan, 2015, J. Am. Chem. Soc., 137, 457, 10.1021/ja511333q
Sun, 2017, Nano Lett., 17, 2313, 10.1021/acs.nanolett.6b05101
Ross, 2015, Nat. Nanotechnol., 10, 453, 10.1038/nnano.2015.68
Park, 2017, Small Methods, 1, 10.1002/smtd.201600032
Ali, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, E3110, 10.1073/pnas.1619302114