Gold nanoparticles in biological optical imaging

Nano Today - Tập 24 - Trang 120-140 - 2019
Yue Wu1, Moustafa R.K. Ali1, Kuangcai Chen2, Ning Fang2, Mostafa A. El-Sayed1
1School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
2Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia, 30302, USA

Tài liệu tham khảo

Jain, 2006, J. Phys. Chem. B, 110, 7238, 10.1021/jp057170o Daniel, 2004, Chem. Rev., 104, 293, 10.1021/cr030698+ Faraday, 1857, Philos. Trans. R. Soc. London, 147, 145, 10.1098/rstl.1857.0011 Nikoobakht, 2003, Chem. Mater., 15, 1957, 10.1021/cm020732l Murphy, 2005, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846 Dreaden, 2012, Chem. Soc. Rev., 41, 2740, 10.1039/C1CS15237H Hu, 2006, Chem. Soc. Rev., 35, 1084, 10.1039/b517615h Ali, 2012, Langmuir, 28, 9807, 10.1021/la301387p Sun, 2002, Science, 298, 2176, 10.1126/science.1077229 Neumann, 2013, ACS Nano, 7, 42, 10.1021/nn304948h Murphy, 2008, Chem. Commun. (Camb.), 544, 10.1039/B711069C Ali, 2016, Int. J. Nanomed., 11, 4849, 10.2147/IJN.S109470 Ali, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, E5655, 10.1073/pnas.1703151114 Turner, 2008, Nature, 454, 981, 10.1038/nature07194 Huang, 2010, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002 Oyelere, 2007, Bioconjug. Chem., 18, 1490, 10.1021/bc070132i Dam, 2012, ACS Nano, 6, 3318, 10.1021/nn300296p Eustis, 2006, Chem. Soc. Rev., 35, 209, 10.1039/B514191E Murphy, 2008, Acc. Chem. Res., 41, 1721, 10.1021/ar800035u Bardhan, 2011, Acc. Chem. Res., 44, 936, 10.1021/ar200023x Cho, 2010, Trends Mol. Med., 16, 561, 10.1016/j.molmed.2010.09.004 Maier, 2001, Adv. Mater., 13, 1501-+, 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z van Dijk, 2006, Phys. Chem. Chem. Phys., 8, 3486, 10.1039/b606090k Myroshnychenko, 2008, Chem. Soc. Rev., 37, 1792, 10.1039/b711486a Nie, 1997, Science, 275, 1102, 10.1126/science.275.5303.1102 Opilik, 2013, Annu. Rev. Anal. Chem. Palo Alto Calif (Palo Alto Calif), 6, 379, 10.1146/annurev-anchem-062012-092646 Li, 2017, Chem. Soc. Rev., 46, 3962, 10.1039/C7CS00169J Lakowicz, 2008, Analyst, 133, 1308, 10.1039/b802918k Bauch, 2014, Plasmonics, 9, 781, 10.1007/s11468-013-9660-5 Gu, 2011, J. Am. Chem. Soc., 133, 5720, 10.1021/ja200603x Tkachenko, 2004, Bioconjug. Chem., 15, 482, 10.1021/bc034189q Durr, 2007, Nano Lett., 7, 941, 10.1021/nl062962v Jain, 2008, Acc. Chem. Res., 41, 1578, 10.1021/ar7002804 Rosman, 2012, Small, 8, 3683, 10.1002/smll.201200853 Wang, 2015, J. Biophotonics Liu, 2017, Nat. Commun., 8, 15646, 10.1038/ncomms15646 Nan, 2008, ChemPhysChem, 9, 707, 10.1002/cphc.200700839 Schneider, 2013, Opt. Express, 21, 3523, 10.1364/OE.21.003523 Qian, 2010, J. Biomed. Opt., 15, 10.1117/1.3477179 Wan, 2014, Sci. Rep., 4, 4529, 10.1038/srep04529 Rong, 2008, Nano Lett., 8, 3386, 10.1021/nl802058q Xiong, 2017, ACS Nano, 11, 541, 10.1021/acsnano.6b06591 Riveline, 2001, J. Cell Biol., 153, 1175, 10.1083/jcb.153.6.1175 Stabley, 2011, Nat. Methods, 9, 64, 10.1038/nmeth.1747 Liu, 2013, J. Am. Chem. Soc., 135, 5320, 10.1021/ja401494e Lee, 2014, Nat. Nanotechnol., 9, 474, 10.1038/nnano.2014.73 Lambertz, 2016, Nano Lett., 16, 3540, 10.1021/acs.nanolett.6b00507 Zhang, 2011, Angew. Chem. Int. Ed. Engl., 50, 6789, 10.1002/anie.201102151 Liu, 2015, Theranostics, 5, 946, 10.7150/thno.11974 SoRelle, 2016, Elife, 5, 10.7554/eLife.16352 Betzer, 2017, ACS Nano, 11, 10883, 10.1021/acsnano.7b04495 Sonnichsen, 2005, Nat. Biotechnol., 23, 741, 10.1038/nbt1100 Cui, 2015, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 7, 387, 10.1002/wnan.1321 Ueno, 2010, Biophys. J., 98, 2014, 10.1016/j.bpj.2010.01.011 Zhang, 2015, Sci. Rep., 5, 11447, 10.1038/srep11447 Cheng, 2017, Nano Res., 10, 1423, 10.1007/s12274-017-1524-4 Chen, 2015, Graduate Theses and Dissertations Tsunoda, 2008, J. Micro., 232, 207, 10.1111/j.1365-2818.2008.02091.x Zhu, 2008, SPIE, 3 Salmon, 2003, High-Resolution video-enhanced differential interference contrast light microscopy, 289, 10.1016/S0091-679X(03)72014-7 Ziv, 2007, CSH Protoc., 2007 Stender, 2013, Chem. Rev., 113, 2469, 10.1021/cr300336e Sun, 2009, Anal. Chem., 81, 9203, 10.1021/ac901623b Chithrani, 2007, Nano Lett., 7, 1542, 10.1021/nl070363y Ali, 2017, ACS Nano, 11, 3716, 10.1021/acsnano.6b08345 Zhao, 2017, Opt. Express, 25, 9860, 10.1364/OE.25.009860 Chen, 2013, Opt. Express, 21, 112, 10.1364/OE.21.000112 Gu, 2012, Anal. Chem. Gu, 2013, ACS Nano, 7, 1658, 10.1021/nn305640y Chen, 2017, Nat. Commun., 8, 887, 10.1038/s41467-017-01001-9 Augspurger, 2014, Anal. Chem., 86, 1196, 10.1021/ac403347e Kukura, 2009, Nat. Methods, 6, 923, 10.1038/nmeth.1395 Ortega-Arroyo, 2012, Phys. Chem. Chem. Phys., 14, 15625, 10.1039/c2cp41013c Mickolajczyk, 2015, Proc Natl Acad Sci U S A, 112, E7186, 10.1073/pnas.1517638112 Andrecka, 2016, vol 581, 517 Mickolajczyk, 2018, bioRxiv Hsieh, 2014, J. Phys. Chem. B, 118, 1545, 10.1021/jp412203t Wu, 2016, Sci. Rep., 6, 20542, 10.1038/srep20542 Nedosekin, 2014, Small, 10, 135, 10.1002/smll.201300024 Boyer, 2002, Science, 297, 1160, 10.1126/science.1073765 Wang, 2010, J. Am. Chem. Soc., 132, 16417, 10.1021/ja106506k Gu, 2012, Nat. Commun., 3, 1030, 10.1038/ncomms2037 Ha, 2013, Chem. Commun. (Camb.), 49, 11038, 10.1039/c3cc46871b Chen, 2015, Anal. Chem., 87, 4096, 10.1021/acs.analchem.5b00604 Kim, 2017, Anal. Sci., 33, 1021, 10.2116/analsci.33.1021 Kim, 2017, J. Phys. Chem. C, 121, 19975, 10.1021/acs.jpcc.7b06823 Lee, 2017, Nanoscale, 9, 12060, 10.1039/C7NR03969G Sun, 2012, Anal. Chem., 84, 1134, 10.1021/ac202824v Chakkarapani, 2018, ACS Nano, 12, 4156, 10.1021/acsnano.8b00025 Sönnichsen, 2005, Nano Lett., 5, 301, 10.1021/nl048089k Spetzler, 2006, Biochemistry, 45, 3117, 10.1021/bi052363n Xu, 2014, Anal. Chem., 86, 3397, 10.1021/ac403700u Xiao, 2010, Anal. Chem., 82, 5268, 10.1021/ac1006848 Enoki, 2015, Anal. Chem., 87, 2079, 10.1021/ac502408c Kaplan, 2018, Sci. Adv., 4, 10.1126/sciadv.1602170 Chowdary, 2018, Biophys. J., 115, 230, 10.1016/j.bpj.2018.05.026 Ha, 2012, Nano Lett., 12, 4282, 10.1021/nl301972t Chang, 2010, Proc. Natl. Acad. Sci., 107, 2781, 10.1073/pnas.0910127107 Zhang, 2011, Opt. Express, 19, 2643, 10.1364/OE.19.002643 Tcherniak, 2011, J. Phys. Chem. C, 115, 15938, 10.1021/jp206203s Zhang, 2013, Anal. Chem., 85, 9433, 10.1021/ac4023956 Behrend, 2004, J. Phys. Chem. B, 108, 10408, 10.1021/jp040125g Yi, 2016, Analyst, 141, 3526, 10.1039/C6AN00325G Anthony, 2015, Anal. Methods, 7, 7020, 10.1039/C5AY00522A Gao, 2018, Langmuir, 34, 1151, 10.1021/acs.langmuir.7b02804 Lee, 2018, ACS Photon., 5, 797, 10.1021/acsphotonics.7b00890 Li, 2010, Nature, 464, 392, 10.1038/nature08907 Wustholz, 2010, J. Am. Chem. Soc., 132, 10903, 10.1021/ja104174m De Angelis, 2011, Nat. Photonics, 5, 683, 10.1038/nphoton.2011.222 Yang, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 268, 10.1073/pnas.1518980113 Tanwar, 2017, J. Am. Chem. Soc., 139, 17639, 10.1021/jacs.7b10410 Zhan, 2018, Angew. Chem. Int. Ed. Engl., 57, 2846, 10.1002/anie.201712749 Ando, 2011, Nano Lett., 11, 5344, 10.1021/nl202877r Huang, 2014, Methods, 68, 348, 10.1016/j.ymeth.2014.02.007 Ali, 2016, J. Am. Chem. Soc., 138, 15434, 10.1021/jacs.6b08787 Sun, 2017, Anal. Bioanal. Chem., 409, 4915, 10.1007/s00216-017-0435-2 Lahr, 2014, ACS Sustain. Chem. Eng., 2, 1599, 10.1021/sc500105n Qian, 2008, Nat. Biotechnol., 26, 83, 10.1038/nbt1377 Wang, 2016, Sci. Rep., 6, 21242, 10.1038/srep21242 Sinha, 2015, Sci. Rep., 5, 8582, 10.1038/srep08582 Kircher, 2012, Nat. Med., 18, 829, 10.1038/nm.2721 Kircher, 2017, Nanomedicine (Lond.), 12, 171, 10.2217/nnm-2016-0385 Stone, 2010, Anal. Chem., 82, 3969, 10.1021/ac100039c von Maltzahn, 2009, Adv Mater, 21, 3175, 10.1002/adma.200803464 Qian, 2011, Biomaterials, 32, 1601, 10.1016/j.biomaterials.2010.10.058 Kang, 2015, Nano Lett., 15, 1766, 10.1021/nl504444w Gandra, 2013, Adv Mater, 25, 1022, 10.1002/adma.201203415 GERSTEN, 1981, J. Chem. Phys., 75, 1139, 10.1063/1.442161 Willets, 2017, Chem. Rev., 117, 7538, 10.1021/acs.chemrev.6b00547 Kühn, 2006, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.017402 Yuan, 2013, Angew. Chem. Int. Ed. Engl., 52, 1217, 10.1002/anie.201208125 Xie, 2009, J. Am. Chem. Soc., 131, 888, 10.1021/ja806804u Wang, 2011, ACS Nano, 5, 4337, 10.1021/nn102752a Farahani, 2005, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.017402 Kinkhabwala, 2009, Nat. Photonics, 3, 654, 10.1038/nphoton.2009.187 Khatua, 2014, ACS Nano, 8, 4440, 10.1021/nn406434y Wientjes, 2014, Nat. Commun., 5, 4236, 10.1038/ncomms5236 Akselrod, 2014, Nat. Photon., 8, 835, 10.1038/nphoton.2014.228 Al Balushi, 2013, Biomed. Opt. Express, 4, 1504, 10.1364/BOE.4.001504 Regmi, 2015, Sci. Rep., 5, 15852, 10.1038/srep15852 Kotnala, 2014, Nano Lett., 14, 853, 10.1021/nl404233z de Torres, 2016, Nano Lett., 16, 6222, 10.1021/acs.nanolett.6b02470 Masuda, 2017, Sci. Rep., 7, 3720, 10.1038/s41598-017-04000-4 Jeynes, 2017, ACS Nano, 11, 12632, 10.1021/acsnano.7b07064 Taylor, 2018, J. Phys. Chem. C Nanomater. Interfaces, 122, 2336, 10.1021/acs.jpcc.7b12473 Feiner-Gracia, 2017, Small, 13, 10.1002/smll.201701631 Jaworska, 2014, Microchim. Ichnoanal. Acta, 182, 119, 10.1007/s00604-014-1307-5 Y. Zhang, Y. Chen, J. Yu, D.J.S. Birch, (2017) 13th IASTED International Conference on Biomedical Engineering (BioMed). https://ieeexplore.ieee.org/document/7893264. Huang, 2013, Biomaterials, 34, 4643, 10.1016/j.biomaterials.2013.02.063 Jang, 2011, ACS Nano, 5, 1086, 10.1021/nn102722z Hayashi, 2013, Chem. Commun., 49, 5334, 10.1039/c3cc41876f Zheng, 2007, Annu. Rev. Phys. Chem., 58, 409, 10.1146/annurev.physchem.58.032806.104546 Chen, 2015, Anal. Chem., 87, 216, 10.1021/ac503636j Qu, 2015, . Palmal, 2014, Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 6, 102, 10.1002/wnan.1245 Venkatesh, 2014, ACS Appl. Mater. Interfaces, 6, 2185, 10.1021/am405345h Wang, 2017, ACS Appl. Mater. Interfaces, 9, 17799, 10.1021/acsami.7b04576 Fernandez, 2015, Biomaterials, 43, 1, 10.1016/j.biomaterials.2014.11.045 Chandirasekar, 2016, Colloids Surf. B Biointerfaces, 143, 472, 10.1016/j.colsurfb.2016.03.067 Zhang, 2015, Adv. Funct. Mater., 25, 1314, 10.1002/adfm.201403095 Wang, 2013, Sci. Rep., 3 Zhao, 2015, Anal. Chem., 87, 9998, 10.1021/acs.analchem.5b02614 Yahia-Ammar, 2016, ACS Nano, 10, 2591, 10.1021/acsnano.5b07596 Ntziachristos, 2010, Nat. Methods, 7, 603, 10.1038/nmeth.1483 Denk, 1990, Science, 248, 73, 10.1126/science.2321027 Wang, 2005, Proc. Natl. Acad. Sci. U. S. A., 102, 15752, 10.1073/pnas.0504892102 Yuan, 2012, Nanotechnology, 23 Gao, 2014, J. Phys. Chem. C, 118, 13904, 10.1021/jp502038v Park, 2018, J. Biophoton., 11 Yin, 2017, Nanoscale, 9, 16661, 10.1039/C7NR03847J Wang, 2017, ACS Nano, 11, 10452, 10.1021/acsnano.7b05645 Alifu, 2017, Mater. Chem. Front., 1, 1746, 10.1039/C7QM00092H Surender, 2016, Chem, 1, 438, 10.1016/j.chempr.2016.08.011 Popescu, 2011, Biophys. Rev., 3, 155, 10.1007/s12551-011-0054-7 Huang, 1991, Science, 254, 1178, 10.1126/science.1957169 Tang, 2017, Anal. Chem., 89, 9758, 10.1021/acs.analchem.7b01623 Jiang, 2017, Anal. Chem., 89, 2561, 10.1021/acs.analchem.6b04785 Wi, 2017, ACS Nano, 11, 6225, 10.1021/acsnano.7b02337 Gao, 2017, Adv. Mater., 29 Chhetri, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, E4289, 10.1073/pnas.1409321111 Jung, 2011, Nano Lett., 11, 2938, 10.1021/nl2014394 Braz, 2012, J. Biomed. Opt., 17, 10.1117/1.JBO.17.6.066003 Wang, 2012, Science, 335, 1458, 10.1126/science.1216210 Li, 2015, Nanomedicine (Lond.), 10, 299, 10.2217/nnm.14.169 Köker, 2018, Nat. Commun., 9, 607, 10.1038/s41467-018-03046-w Galanzha, 2017, Nat. Commun., 8, 15528, 10.1038/ncomms15528 Chen, 2017, Nat. Commun., 8, 15782, 10.1038/ncomms15782 Perillo, 2015, Nat. Commun., 6, 7874, 10.1038/ncomms8874 Toprak, 2007, Nano Lett., 7, 2043, 10.1021/nl0709120 Speidel, 2003, Opt. Lett., 28, 69, 10.1364/OL.28.000069 Pavani, 2008, Opt. Express, 16, 22048, 10.1364/OE.16.022048 Huang, 2008, Science, 319, 810, 10.1126/science.1153529 Sun, 2014, Science, 346 Lan, 2015, J. Am. Chem. Soc., 137, 457, 10.1021/ja511333q Sun, 2017, Nano Lett., 17, 2313, 10.1021/acs.nanolett.6b05101 Ross, 2015, Nat. Nanotechnol., 10, 453, 10.1038/nnano.2015.68 Park, 2017, Small Methods, 1, 10.1002/smtd.201600032 Ali, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, E3110, 10.1073/pnas.1619302114