Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life
Tài liệu tham khảo
Feng, 2015, Facile synthesis of shape controlled graphene–polyaniline composites for high performance supercapacitor electrode materials, New J. Chem., 39, 2261, 10.1039/C4NJ01843E
Li, 2017, Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array, Nanoscale, 9, 193, 10.1039/C6NR07921K
Kumar, 2018, Hierarchical nanohoneycomb-like CoMoO4–MnO2 core–shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance, J. Mater. Chem. A, 6, 7182, 10.1039/C8TA00889B
Ji, 2014, Capacitance of carbon-based electrical double-layer capacitors, Nat. Commun., 5, 1
Morimoto, 1996, Electric double-layer capacitor using organic electrolyte, J. Power Sources, 60, 239, 10.1016/S0378-7753(96)80017-6
Zhang, 2009, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j
Pilon, 2015, Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors, J. Electron. Soc., 162, A5158, 10.1149/2.0211505jes
Lecce, 2017, Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations, Green Chem., 19, 3442, 10.1039/C7GC01328K
Feng, 2015, Synthesis of shape-controlled NiO–graphene nanocomposites with enhanced supercapacitive properties, New J. Chem., 39, 4026, 10.1039/C5NJ00040H
Balamurugan, 2017, Hierarchical design of Cu1xNixS nanosheets for high-performance asymmetric solid-state supercapacitors, J. Mater. Chem. A, 5, 19760, 10.1039/C7TA04071G
Rakhi, 2011, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes, J. Mater. Chem., 21, 16197, 10.1039/c1jm12963e
Choudhary, 2017, Asymmetric supercapacitor electrodes and devices, Adv. Mater., 29, 1605336, 10.1002/adma.201605336
Yu, 2015, Jayan Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8, 702, 10.1039/C4EE03229B
Park, 2015, Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices, Chem. Mater., 27, 457, 10.1021/cm5034244
Ren, 2013, Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber, Adv. Mater., 25, 5965, 10.1002/adma.201302498
Huang, 2012, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805, 10.1002/smll.201102635
Zhang, 2013, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, J. Sci. Rep., 3, 1
Cheng, 2011, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13, 17615, 10.1039/c1cp21910c
You, 2013, Three dimensional N-doped graphene–CNT networks for supercapacitor, Chem. Commun., 49, 5016, 10.1039/c3cc41949e
Sridhar, 2012, Defect-engineered three-dimensional graphene nanotube palladium nanostructures with ultrahigh capacitance, ACS Nano, 6, 10562, 10.1021/nn3046133
Yu, 2010, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors, J. Phys. Chem. Lett., 1, 467, 10.1021/jz9003137
Liu, 2014, High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film, Energy Environ. Sci., 7, 3709, 10.1039/C4EE01475H
Guan, 2015, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS Nano, 9, 5198, 10.1021/acsnano.5b00582
Yan, 2013, Three-dimensional metal graphene nanotube multifunctional hybrid materials, ACS Nano, 7, 58, 10.1021/nn3015882
Hussain, 2003, Characterization of activated reactive evaporated MoO3 thin films for gas sensor applications, Mate. Chem. Phys., 80, 638, 10.1016/S0254-0584(03)00101-9
Khademi, 2009, Growth and field emission study of molybdenum oxide nanostars, J. Phys. Chem. C, 113, 19298, 10.1021/jp9056237
Fu, 2005, Mechanisms of methane activation and transformation on molybdenum oxide based catalysts, J. Am. Chem. Soc., 127, 3989, 10.1021/ja0441099
Zheng, 2009, Novel metastable hexagonal Moo3 nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater., 21, 5681, 10.1021/cm9023887
Brezesinski, 2010, Ordered mesoporous-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9, 146, 10.1038/nmat2612
Mrowiecka, 2008, Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA, J. Phys. Chem. C, 112, 11050, 10.1021/jp800147f
Noh, 2017, High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3, Carbon, 116, 470, 10.1016/j.carbon.2017.02.033
Sun, 2018, nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries, 2D, Mater., 5
Zhou, 2015, The synthesis of shape-controlled a-MoO3/graphene nanocomposites for high performance supercapacitors, New J. Chem., 39, 8780, 10.1039/C5NJ01722J
Li, 2015, Synthesis of ternary graphene/molybdenum oxide/poly(p-phenylenediamine) nanocomposites for symmetric supercapacitors, RSC Adv., 5, 98278, 10.1039/C5RA18979A
Hsu, 2016, Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor, J. Solid State Electrochem, 20, 691, 10.1007/s10008-015-3094-2
Chang, 2013, Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density, Adv. Funct. Mater., 23, 5074, 10.1002/adfm201301851
Guo, 2017, Hierarchical 3D cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors, Small, 1701275
Guo, 2016, Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors, J. Mater. Chem. A, 4, 17560, 10.1039/C6TA07400F
Liu, 2015, In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high performance energy storage, J. Mater. Chem. A, 3, 624, 10.1039/C4TA04023F
Lee, 2001, Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 343, 33, 10.1016/S0009-2614(01)00680-7
Zhang, 2015, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes, Carbon, 89, 328, 10.1016/j.carbon.2015.03.051
Yang, 2011, Hydrothermal synthesis of MoO3 nanobelt-graphene composites, Cryst. Res. Technol., 46, 1195, 10.1002/crat.201100302
Lin, 2007, Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane, Carbon, 45, 223, 10.1016/j.carbon.2006.09.012
Huang, 2014, Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes, J. Power Sources, 269, 760, 10.1016/j.jpowsour.2014.07.031
Roy, 2014, Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites, J. Mater. Chem. A, 2, 3961, 10.1039/c3ta14528j
Shulga, 2011, Functionalisation of aligned carbon nanotubes with nitric acid vapor, Micro, Nano Lett., 6, 704
Jin, 2004, Direct epoxidation of propylene with molecular oxygen over Ag-MoO3/ZrO2 catalyst, Catalyst. Catal. Today, 93–95, 173, 10.1016/j.cattod.2004.06.038
Liu, 2017, Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates, Sci. Rep., 7, 1845, 10.1038/s41598-017-02025-3
Zhoua, 2015, Ultrathin MoO3 nanocrystal self-assembled on Graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life, Nano Energy, 12, 510, 10.1016/j.nanoen.2015.01.017
Sun, 2005, Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water, Adv. Mater., 17, 928, 10.1002/adma.200400839
Jiang, 2013, Youcai Liu, Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution, J. Mater. Chem. A, 1, 2588, 10.1039/c2ta01120d
Li, 2013, A micro-pulse process of atomic layer deposition of iron oxide using ferrocene and ozone precursors and Ti-doping, Chem. Vapor Depos., 19, 104, 10.1002/cvde.201207030
Ramachandran, 2014, Plasma enhanced atomic layer deposition of Fe2O3 thin films, J. Mater. Chem. A, 2, 10662, 10.1039/C4TA01486C
Schollhorn, 1980, Reversible topotactic redox reactions of solids by electron/ion transfer, Angew. Chem. Int. Ed. Engl., 19, 983, 10.1002/anie.198009831
Yuan, 2012, Ultrathin mesoporous NiCo2O 4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors, Adv. Funct. Mater., 22, 4592, 10.1002/adfm.201200994
Garakani, 2017, Heterogeneous, Mesoporous NiCo2O4-MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies, J. Mater. Chem. A, 5, 397, 10.1039/C6TA08929A
Wang, 2016, A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance, J. Mater. Chem. A, 4, 5115, 10.1039/C6TA01398H
Liu, 2013, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors, J. Mater. Chem. A, 1, 13582, 10.1039/c3ta12902k
Wanga, 2016, A high energy asymmetric supercapacitor based on flower-like CoMoO4/MnO2 heterostructures and activated carbon, Electrochim. Acta, 213, 663, 10.1016/j.electacta.2016.07.155
Mu, 2017, Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors, ACS Appl. Mater. Interfaces, 9, 35775, 10.1021/acsami.7b09005
Li, 2017, Hierarchical CoMoO4@Co3O4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors, J. Mater. Chem. A, 5, 17312, 10.1039/C7TA04981A
Tai, 2017, Ultra-small and low crystalline CoMoO4 nanorods for electrochemical capacitors, Sustainable Energy Fuels, 1, 324, 10.1039/C6SE00025H