Quantum random walk on the dual of SU (n)
Tóm tắt
We study a quantum random walk onA(SU(n)), the von Neumann algebra of SU(n), obtained by tensoring the basic representation of SU(n). Two classical Markov chains are derived from this quantum random walk, by restriction to commutative subalgebras ofA(SU(n)), and the main result of the paper states that these two Markov chains are related by means of Doob'sh-processes.
Tài liệu tham khảo
Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic process. RIMS Kokyuroku18, 97–133 (1982)
Babillot, M.: Théorie du renouvellement pour des chaines semi-markoviennes transientes. Ann. Inst. Henri Poincare24, 507–569 (1988)
Biane, Ph.: Marches de Bernoulli quantiques. Séminaire de Probabilités XXIV. (Lect. Notes Math., vol. 1426, pp. 329–344). Berlin Heidelberg New York: Springer 1990
Biane, Ph.: Some properties of quantum Bernoulli random walks. Quantum Probabilities Proceedings, Trento 1989 (to appear)
Brocker, T., tom Dieck, T.: Representations of compact Lie groups. (Graduate texts in Mathematics vol. 98). Berlin Heidelberg New York: Springer 1985
Dixmier, J.: LesC *-algèbres et leurs représentations. Paris: Gauthier-Villars 1964
Feller, W.: An introduction to probability theory and its applications, vol. 1 and 2, 2nd edn. New York: Wiley 1970
Parthasarathy, K.R.: A generalized Biane's process. Séminaire de probabilités XXIV. (Lect. Notes Math. vol. 1426, pp. 345–348). Berlin Heidelberg New York: Springer 1990
Revuz, D.: Markov chains, 2nd edn. Amsterdam: North-Holland 1982
Waldenfels, W. von: The Markov process of total spin. Séminaire de Probabilités XXIV. (Lect. Notes Math., vol. 1426, pp. 357–361). Berlin Heidelberg New York: Springer 1990
