Quantum random walk on the dual of SU (n)

Springer Science and Business Media LLC - Tập 89 - Trang 117-129 - 1991
Philippe Biane1
1Laborative de probabilités, Tour 56-66, 3e étage, Université Paris 6, Paris Cedex 05, France

Tóm tắt

We study a quantum random walk onA(SU(n)), the von Neumann algebra of SU(n), obtained by tensoring the basic representation of SU(n). Two classical Markov chains are derived from this quantum random walk, by restriction to commutative subalgebras ofA(SU(n)), and the main result of the paper states that these two Markov chains are related by means of Doob'sh-processes.

Tài liệu tham khảo

Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic process. RIMS Kokyuroku18, 97–133 (1982) Babillot, M.: Théorie du renouvellement pour des chaines semi-markoviennes transientes. Ann. Inst. Henri Poincare24, 507–569 (1988) Biane, Ph.: Marches de Bernoulli quantiques. Séminaire de Probabilités XXIV. (Lect. Notes Math., vol. 1426, pp. 329–344). Berlin Heidelberg New York: Springer 1990 Biane, Ph.: Some properties of quantum Bernoulli random walks. Quantum Probabilities Proceedings, Trento 1989 (to appear) Brocker, T., tom Dieck, T.: Representations of compact Lie groups. (Graduate texts in Mathematics vol. 98). Berlin Heidelberg New York: Springer 1985 Dixmier, J.: LesC *-algèbres et leurs représentations. Paris: Gauthier-Villars 1964 Feller, W.: An introduction to probability theory and its applications, vol. 1 and 2, 2nd edn. New York: Wiley 1970 Parthasarathy, K.R.: A generalized Biane's process. Séminaire de probabilités XXIV. (Lect. Notes Math. vol. 1426, pp. 345–348). Berlin Heidelberg New York: Springer 1990 Revuz, D.: Markov chains, 2nd edn. Amsterdam: North-Holland 1982 Waldenfels, W. von: The Markov process of total spin. Séminaire de Probabilités XXIV. (Lect. Notes Math., vol. 1426, pp. 357–361). Berlin Heidelberg New York: Springer 1990