Microstructure simulations of Inconel 718 during selective laser melting using a phase field model
Tóm tắt
Từ khóa
Tài liệu tham khảo
DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, de A, Zhang W (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002
Wang X, Gong X, Chou K (2017) Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng B J Eng Manuf 231:1890–1903. https://doi.org/10.1177/0954405415619883
Ji Y, Chen L, Chen L-Q (2018) Understanding microstructure evolution during additive manufacturing of metallic alloys using phase-field modeling. In: Gouge M, Michaleris P (eds) Thermo-mechanical modeling of additive manufacturing. Elsevier Inc.,Oxford, United Kingdom, pp 93–116
Dinda GP, Dasgupta AK, Mazumder J (2012) Texture control during laser deposition of nickel-based superalloy. Scr Mater 67:503–506. https://doi.org/10.1016/j.scriptamat.2012.06.014
Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T (2015) Effect of heat treatment on microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 639:647–655. https://doi.org/10.1016/j.msea.2015.05.035
Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 689:220–232. https://doi.org/10.1016/j.msea.2017.02.062
Zhang D, Niu W, Cao X, Liu Z (2015) Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng A 644:32–40. https://doi.org/10.1016/j.msea.2015.06.021
Choi J-P, Shin GH, Yang S, Yang DY, Lee JS, Brochu M, Yu JH (2017) Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol 310:60–66. https://doi.org/10.1016/j.powtec.2017.01.030
Schneider J, Lund B, Fullen M (2018) Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens. Addit Manuf 21:248–254. https://doi.org/10.1016/j.addma.2018.03.005
Cao GH, Sun TY, Wang CH, Li X, Liu M, Zhang ZX, Hu PF, Russell AM, Schneider R, Gerthsen D, Zhou ZJ, Li CP, Chen GF (2018) Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Mater Charact 136:398–406. https://doi.org/10.1016/j.matchar.2018.01.006
Vastola G, Zhang G, Pei QX, Zhang YW (2016) Modeling the microstructure evolution during additive manufacturing of Ti6Al4V: a comparison between electron beam melting and selective laser melting. JOM 68:1370–1375. https://doi.org/10.1007/s11837-016-1890-5
Andani M et al (2018) Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Mater Des 137:204–213. https://doi.org/10.1016/j.matdes.2017.10.026
Liu S et al (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328. https://doi.org/10.1016/j.matdes.2018.01.022
Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214:2627–2636. https://doi.org/10.1016/j.jmatprotec.2014.06.001
Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211:978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016
Yin H, Felicelli SD (2010) Dendrite growth simulation during solidification in the LENS process. Acta Mater 58:1455–1465. https://doi.org/10.1016/j.actamat.2009.10.053
Fallah V, Amoorezaei M, Provatas N, Corbin SF, Khajepour A (2012) Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys. Acta Mater 60:1633–1646. https://doi.org/10.1016/j.actamat.2011.12.009
Markl M, Körner C (2016) Multiscale modeling of powder bed-based additive manufacturing. Annu Rev Mater Res 46:93–123. https://doi.org/10.1146/annurev-matsci-070115-032158
Ingo S (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001. https://doi.org/10.1088/0965-0393/17/7/073001
Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM (2017) Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6Al-4V ELI manufactured by electron beam melting (EBM). Eng Fract Mech 176:263–280. https://doi.org/10.1016/j.engfracmech.2017.03.024
Liu D, Wang Y (2017) Mesoscale multi-physics simulation of solidification in selective laser melting process using a phase field and thermal lattice Boltzmann model:V001T002A027. https://doi.org/10.1115/DETC2017-67633
Tan W, Bailey NS, Shin YC (2011) A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Comput Mater Sci 50:2573–2585. https://doi.org/10.1016/j.commatsci.2011.03.044
Wang L, Wei Y, Yu F, Zhang Q, Peng Q (2016a) Phase-field simulation of dendrite growth under forced flow conditions in an Al–Cu welding molten pool. Cryst Res Technol 51:602–609. https://doi.org/10.1002/crat.201600165
Wang L, Wei Y, Zhan X, Yu F (2016b) A phase field investigation of dendrite morphology and solute distributions under transient conditions in an Al–Cu welding molten pool. Sci Technol Weld Join 21:446–451. https://doi.org/10.1080/13621718.2015.1124504
Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67:1176–1182. https://doi.org/10.1007/s11837-015-1352-5
Lopez-Botello O et al (2017) Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater Des 113:369–376. https://doi.org/10.1016/j.matdes.2016.10.031
Panwisawas C et al (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490. https://doi.org/10.1016/j.commatsci.2016.10.011
Lee Y, Zhang W (2016) Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 12:178–188. https://doi.org/10.1016/j.addma.2016.05.003
Foroozmehr A et al (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263. https://doi.org/10.1016/j.matdes.2015.10.002
Cole JV (2017) Multiple high-fidelity modeling tools for metal additive manufacturing process development, (Research Report)
Zeng K, Pal D, Stucker B (2012) A review of thermal analysis methods in laser sintering and selective laser melting, pp 796–814 http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-60-Zeng.pdf
Cheng B, Gong X, Xiaoqing W, Chou K (2014) Thermal analysis, microstructural characterization and nanoindentation for electron beam additive manufacturing. The Fourteenth Annual Early Career Technical Conference, Birmingham, pp 196–203
Sahoo S, Chou K (2016) Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Addit Manuf 9:14–24. https://doi.org/10.1016/j.addma.2015.12.005
Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87(115701). https://doi.org/10.1103/PhysRevLett.87.115701
Ohno M, Takaki T, Shibuta Y (2016) Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion. Phys Rev E 93:012802. https://doi.org/10.1103/PhysRevE.93.012802
Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y, Williams ME, Allen AJ, Guyer JE, Levine LE (2017) Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater 139:244–253. https://doi.org/10.1016/j.actamat.2017.05.003
Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A, Amberg G (2008) Phase-field simulation of weld solidification microstructure in an Al–Cu alloy. Model Simul Mater Sci Eng 16:065005. https://doi.org/10.1088/0965-0393/16/6/065005
Greenwood M, Haataja M, Provatas N (2004) Crossover scaling of wavelength selection in directional solidification of binary alloys. Phys Rev Lett 93:246101–246101. https://doi.org/10.1103/PhysRevLett.93.246101
Nastac L (1999) Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys. Acta Mater 47:4253–4262. https://doi.org/10.1016/S1359-6454(99)00325-0
Liu Z, Qi H (2015) Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy. J Mater Process Technol 216:19–27. https://doi.org/10.1016/j.jmatprotec.2014.08.025
Wang HM, Zhang JH, Tang YJ, Hu ZQ, Yukawa N, Morinaga M, Murata Y (1992) Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy. Mater Sci Eng A 156:109–116. https://doi.org/10.1016/0921-5093(92)90421-V
Kou S (1987) Welding metallurgy, New York
Burden MH, Hunt JD (1974a) Cellular and dendritic growth. I. J Cryst Growth 22:99–108. https://doi.org/10.1016/0022-0248(74)90126-2
Burden MH, Hunt JD (1974b) Cellular and dendritic growth. II. J Cryst Growth 22:109–116. https://doi.org/10.1016/0022-0248(74)90127-4
Wang X, Chou K (2017a) Electron backscatter diffraction analysis of Inconel 718 parts fabricated by selective laser melting additive manufacturing. JOM 69:402–408. https://doi.org/10.1007/s11837-016-2198-1
Wang X, Keya T, Chou K (2016c) Build height effect on the Inconel 718 parts fabricated by selective laser melting. Procedia Manufacturing 5:1006–1017. https://doi.org/10.1016/j.promfg.2016.08.089
Wang X, Chou K (2017b) Effects of thermal cycles on the microstructure evolution of Inconel 718 during selective laser melting process. Additive Manufacturing 18:1–14. https://doi.org/10.1016/j.addma.2017.08.016
Jia Q, Gu D (2014) Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd 585:713–721. https://doi.org/10.1016/j.jallcom.2013.09.171
AlMangour B et al (2018) Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: experimental and simulation methods. J Mater Process Technol 257:288–301. https://doi.org/10.1016/j.jmatprotec.2018.01.028
Wang X, Gong X, Chou K (2015) Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manuf 1:287–295. https://doi.org/10.1016/j.promfg.2015.09.026
Dehoff RR, Kirka MM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, Babu SS (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31:931–938. https://doi.org/10.1179/1743284714Y.0000000734