A simple and robust method for radiochemical separation of no-carrier-added 64Cu produced in a research reactor for radiopharmaceutical preparation
Tài liệu tham khảo
Abbasi, 2006, Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on zinc: small-scale production of no-carrier-added 64Cu in a nuclear reactor, Radiochim. Acta, 94, 63, 10.1524/ract.2006.94.2.63
Amor-Coarasa, 2016, Comprehensive quality control of the ITG 68Ge/68Ga generator and synthesis of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC for clinical imaging, J. Nucl. Med., 57, 1402, 10.2967/jnumed.115.171249
Avila-Rodriguez, 2007, Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei, Appl. Radiat. Isot., 65, 1115, 10.1016/j.apradiso.2007.05.012
Blower, 1996, Copper radionuclides and radiopharmaceuticals in nuclear medicine, Nucl. Med. Biol., 23, 957, 10.1016/S0969-8051(96)00130-8
Bokhari, 2010, Production of low and high specific activity 64Cu in a reactor, J. Radioanal. Nucl. Chem., 284, 265, 10.1007/s10967-010-0519-3
Boros, 2019, Radioactive transition metals for imaging and therapy, Chem. Rev., 119, 870, 10.1021/acs.chemrev.8b00281
Boschi, 2018, The emerging role of copper-64 radiopharmaceuticals as cancer theranostics, Drug Discov. Today, 23, 1489, 10.1016/j.drudis.2018.04.002
Chakraborty, 2013, The practicality of nanoceria-PAN-based 68Ge/68Ga generator toward preparation of 68Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging, Cancer Biother. Radiopharm., 28, 77, 10.1089/cbr.2012.1252
Chakravarty, 2015, Molecular imaging of breast cancer: role of RGD peptides, Mini Rev. Med. Chem., 15, 1073, 10.2174/1389557515666150909144606
Chakravarty, 2015, 64CuCl2 produced by direct neutron activation route as a cost-effective probe for cancer imaging: the journey has begun, RSC Adv., 5, 91723, 10.1039/C5RA17266G
Chakravarty, 2016, 64Cu2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer, Mol. Pharm., 13, 3601, 10.1021/acs.molpharmaceut.6b00582
Chakravarty, 2016, 90Y/177Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation, J. Label. Compd. Radiopharm., 59, 354, 10.1002/jlcr.3413
Chakravarty, 2014, Matching the decay half-life with the biological half-life: ImmunoPET imaging with 44Sc-labeled cetuximab Fab fragment, Bioconjugate Chem., 25, 2197, 10.1021/bc500415x
Chakravarty, 2018, Clinically relevant radioactive dose formulation of [177]Lu-labeled cetuximab-fab fragment for potential use in cancer theranostics, ChemistrySelect, 3, 12301, 10.1002/slct.201702224
Chen, 2004, MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides, Mol. Imag. Biol., 6, 350, 10.1016/j.mibio.2004.06.004
Corwin, 1949, The structure of diphenylthiocarbazone (dithizone), J. Am. Chem. Soc., 71, 3698, 10.1021/ja01179a034
Cutler, 2013, Radiometals for combined imaging and therapy, Chem. Rev., 113, 858, 10.1021/cr3003104
Dasgupta, 1991, A new separation procedure for 67Cu from proton irradiated Zn, Appl. Radiat. Isot., 42, 371, 10.1016/0883-2889(91)90140-V
Dearling, 2015, The ionic charge of copper-64 complexes conjugated to an engineered antibody affects biodistribution, Bioconjugate Chem., 26, 707, 10.1021/acs.bioconjchem.5b00049
do Carmo, 2020, Production of radiometals in liquid targets, EJNMMI Radiopharm. Chem., 5, 10.1186/s41181-019-0088-x
Gutfilen, 2018, Copper-64: a real theranostic agent, Drug Des. Dev. Ther., 12, 3235, 10.2147/DDDT.S170879
Hassanein, 2006, Separation of carrier-free 64,67Cu radionuclides from irradiated zinc targets using 6-tungstocerate(IV) gel matrix, J. Radioanal. Nucl. Chem., 269, 75, 10.1007/s10967-006-0232-4
Hernandez, 2015, Evaluation of two novel 64Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin alphavbeta3, Eur. J. Nucl. Med. Mol. Imag., 42, 1859, 10.1007/s00259-015-3085-7
Hicks, 2019, 64Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy, J. Nucl. Med., 60, 777, 10.2967/jnumed.118.217745
Indian Pharmacopoeia, 2014, 3393
Irving, 1980, The analytical applications of dithizone, Crit. Rev. Anal. Chem., 8, 321, 10.1080/10408348008085716
Kallithrakas-Kontos, 2020, A dataset of 112 ligands for the preconcentration of mercury, uranium, lanthanum and other pollutants and heavy metals in water, Data Brief, 29, 10.1016/j.dib.2020.105236
Kallithrakas-Kontos, 2019, Solid-state polymer membranes for simple, sensitive, and low-cost monitoring of mercury in water, Sci. Total Environ., 697, 10.1016/j.scitotenv.2019.134099
Kelly, 2020, Preclinical evaluation of a high-affinity sarcophagine-containing PSMA ligand for 64Cu/67Cu-based theranostics in prostate cancer, Mol. Pharm., 17, 1954, 10.1021/acs.molpharmaceut.0c00060
Kozempel, 2007, A novel method for n.c.a. 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography, Radiochim. Acta, 95, 75, 10.1524/ract.2007.95.2.75
Liu, 2014, Development of multi-functional chelators based on sarcophagine cages, Molecules, 19, 4246, 10.3390/molecules19044246
McCarthy, 1997, Efficient production of high specific activity 64Cu using a biomedical cyclotron, Nucl. Med. Biol., 24, 35, 10.1016/S0969-8051(96)00157-6
Mirzadeh, 1986, Production of No-carrier added 67Cu, Appl. Radiat. Isot., 37, 29, 10.1016/0883-2889(86)90192-9
Mushtaq, 1990, Production of no-carrier-added 64Cu and 67Cu in a reactor, J. Radioanal. Nucl. Chem., 141, 261, 10.1007/BF02035793
Ntoi, 2017, Seven chromisms associated with dithizone, J. Phys. Chem., 121, 9243, 10.1021/acs.jpca.7b09490
Orbay, 2013, Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105, Mol. Pharm., 10, 2749, 10.1021/mp400191w
Schwarzbach, 1995, Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods, Appl. Radiat. Isot., 46, 329, 10.1016/0969-8043(95)00010-B
Shi, 2009, Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly3 and PEG4 linkers, Bioconjugate Chem., 20, 750, 10.1021/bc800455p
Shi, 2015, PET imaging of abdominal aortic aneurysm with 64Cu-labeled anti-CD105 antibody fab fragment, J. Nucl. Med., 56, 927, 10.2967/jnumed.114.153098
Wang, 2018, Development of cellulosic paper-based test strips for mercury(II) determination in aqueous solution, J. Anal. Methods Chem., 10.1155/2018/3594020
White, 1936, Dithizone as an analytical reagent, J Chem. Educ., 13, 369, 10.1021/ed013p369
Zinn, 1994, Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding, Cancer, 73, 774, 10.1002/1097-0142(19940201)73:3+<774::AID-CNCR2820731305>3.0.CO;2-L