A simple and robust method for radiochemical separation of no-carrier-added 64Cu produced in a research reactor for radiopharmaceutical preparation

Applied Radiation and Isotopes - Tập 165 - Trang 109341 - 2020
Rubel Chakravarty1,2, Ardhi Rajeswari1, Priyalata Shetty1, K.C. Jagadeesan1, Ramu Ram1, Sachin Jadhav1, Haladhar Dev Sarma3, Ashutosh Dash1,2, Sudipta Chakraborty1,2
1Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
2Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
3Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India

Tài liệu tham khảo

Abbasi, 2006, Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on zinc: small-scale production of no-carrier-added 64Cu in a nuclear reactor, Radiochim. Acta, 94, 63, 10.1524/ract.2006.94.2.63 Amor-Coarasa, 2016, Comprehensive quality control of the ITG 68Ge/68Ga generator and synthesis of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC for clinical imaging, J. Nucl. Med., 57, 1402, 10.2967/jnumed.115.171249 Avila-Rodriguez, 2007, Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei, Appl. Radiat. Isot., 65, 1115, 10.1016/j.apradiso.2007.05.012 Blower, 1996, Copper radionuclides and radiopharmaceuticals in nuclear medicine, Nucl. Med. Biol., 23, 957, 10.1016/S0969-8051(96)00130-8 Bokhari, 2010, Production of low and high specific activity 64Cu in a reactor, J. Radioanal. Nucl. Chem., 284, 265, 10.1007/s10967-010-0519-3 Boros, 2019, Radioactive transition metals for imaging and therapy, Chem. Rev., 119, 870, 10.1021/acs.chemrev.8b00281 Boschi, 2018, The emerging role of copper-64 radiopharmaceuticals as cancer theranostics, Drug Discov. Today, 23, 1489, 10.1016/j.drudis.2018.04.002 Chakraborty, 2013, The practicality of nanoceria-PAN-based 68Ge/68Ga generator toward preparation of 68Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging, Cancer Biother. Radiopharm., 28, 77, 10.1089/cbr.2012.1252 Chakravarty, 2015, Molecular imaging of breast cancer: role of RGD peptides, Mini Rev. Med. Chem., 15, 1073, 10.2174/1389557515666150909144606 Chakravarty, 2015, 64CuCl2 produced by direct neutron activation route as a cost-effective probe for cancer imaging: the journey has begun, RSC Adv., 5, 91723, 10.1039/C5RA17266G Chakravarty, 2016, 64Cu2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer, Mol. Pharm., 13, 3601, 10.1021/acs.molpharmaceut.6b00582 Chakravarty, 2016, 90Y/177Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation, J. Label. Compd. Radiopharm., 59, 354, 10.1002/jlcr.3413 Chakravarty, 2014, Matching the decay half-life with the biological half-life: ImmunoPET imaging with 44Sc-labeled cetuximab Fab fragment, Bioconjugate Chem., 25, 2197, 10.1021/bc500415x Chakravarty, 2018, Clinically relevant radioactive dose formulation of [177]Lu-labeled cetuximab-fab fragment for potential use in cancer theranostics, ChemistrySelect, 3, 12301, 10.1002/slct.201702224 Chen, 2004, MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides, Mol. Imag. Biol., 6, 350, 10.1016/j.mibio.2004.06.004 Corwin, 1949, The structure of diphenylthiocarbazone (dithizone), J. Am. Chem. Soc., 71, 3698, 10.1021/ja01179a034 Cutler, 2013, Radiometals for combined imaging and therapy, Chem. Rev., 113, 858, 10.1021/cr3003104 Dasgupta, 1991, A new separation procedure for 67Cu from proton irradiated Zn, Appl. Radiat. Isot., 42, 371, 10.1016/0883-2889(91)90140-V Dearling, 2015, The ionic charge of copper-64 complexes conjugated to an engineered antibody affects biodistribution, Bioconjugate Chem., 26, 707, 10.1021/acs.bioconjchem.5b00049 do Carmo, 2020, Production of radiometals in liquid targets, EJNMMI Radiopharm. Chem., 5, 10.1186/s41181-019-0088-x Gutfilen, 2018, Copper-64: a real theranostic agent, Drug Des. Dev. Ther., 12, 3235, 10.2147/DDDT.S170879 Hassanein, 2006, Separation of carrier-free 64,67Cu radionuclides from irradiated zinc targets using 6-tungstocerate(IV) gel matrix, J. Radioanal. Nucl. Chem., 269, 75, 10.1007/s10967-006-0232-4 Hernandez, 2015, Evaluation of two novel 64Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin alphavbeta3, Eur. J. Nucl. Med. Mol. Imag., 42, 1859, 10.1007/s00259-015-3085-7 Hicks, 2019, 64Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy, J. Nucl. Med., 60, 777, 10.2967/jnumed.118.217745 Indian Pharmacopoeia, 2014, 3393 Irving, 1980, The analytical applications of dithizone, Crit. Rev. Anal. Chem., 8, 321, 10.1080/10408348008085716 Kallithrakas-Kontos, 2020, A dataset of 112 ligands for the preconcentration of mercury, uranium, lanthanum and other pollutants and heavy metals in water, Data Brief, 29, 10.1016/j.dib.2020.105236 Kallithrakas-Kontos, 2019, Solid-state polymer membranes for simple, sensitive, and low-cost monitoring of mercury in water, Sci. Total Environ., 697, 10.1016/j.scitotenv.2019.134099 Kelly, 2020, Preclinical evaluation of a high-affinity sarcophagine-containing PSMA ligand for 64Cu/67Cu-based theranostics in prostate cancer, Mol. Pharm., 17, 1954, 10.1021/acs.molpharmaceut.0c00060 Kozempel, 2007, A novel method for n.c.a. 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography, Radiochim. Acta, 95, 75, 10.1524/ract.2007.95.2.75 Liu, 2014, Development of multi-functional chelators based on sarcophagine cages, Molecules, 19, 4246, 10.3390/molecules19044246 McCarthy, 1997, Efficient production of high specific activity 64Cu using a biomedical cyclotron, Nucl. Med. Biol., 24, 35, 10.1016/S0969-8051(96)00157-6 Mirzadeh, 1986, Production of No-carrier added 67Cu, Appl. Radiat. Isot., 37, 29, 10.1016/0883-2889(86)90192-9 Mushtaq, 1990, Production of no-carrier-added 64Cu and 67Cu in a reactor, J. Radioanal. Nucl. Chem., 141, 261, 10.1007/BF02035793 Ntoi, 2017, Seven chromisms associated with dithizone, J. Phys. Chem., 121, 9243, 10.1021/acs.jpca.7b09490 Orbay, 2013, Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105, Mol. Pharm., 10, 2749, 10.1021/mp400191w Schwarzbach, 1995, Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods, Appl. Radiat. Isot., 46, 329, 10.1016/0969-8043(95)00010-B Shi, 2009, Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly3 and PEG4 linkers, Bioconjugate Chem., 20, 750, 10.1021/bc800455p Shi, 2015, PET imaging of abdominal aortic aneurysm with 64Cu-labeled anti-CD105 antibody fab fragment, J. Nucl. Med., 56, 927, 10.2967/jnumed.114.153098 Wang, 2018, Development of cellulosic paper-based test strips for mercury(II) determination in aqueous solution, J. Anal. Methods Chem., 10.1155/2018/3594020 White, 1936, Dithizone as an analytical reagent, J Chem. Educ., 13, 369, 10.1021/ed013p369 Zinn, 1994, Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding, Cancer, 73, 774, 10.1002/1097-0142(19940201)73:3+<774::AID-CNCR2820731305>3.0.CO;2-L