Effect of chronic chlorpyrifos exposure on diaphragmatic muscle contractility and MHC isoforms in adult rats

Springer Science and Business Media LLC - Tập 14 - Trang 77-87 - 2022
Hiba El Khayat EL Sabbouri1,2, Nancy Hallal1,3, Walaa Darwiche1, Jérôme Gay-Quéheillard2, Véronique Bach2, Wiam Ramadan1,3, Wissam H. Joumaa1
1Laboratoire Rammal Hassan Rammal, Équipe de Recherche PhyToxE, Faculté Des Sciences (Section V), Université Libanaise, Nabatieh, Lebanon
2PERITOX UMR-I-01, University of Picardy Jules Verne, Amiens, France
3Lebanese Institute for Biomedical Research and Application (LIBRA), Lebanese International University (LIU), Beirut, Lebanon

Tóm tắt

Chlorpyrifos (CPF) is an organophosphate insecticide widely used in crop applications. It exerts its toxicity by inhibiting acetylcholinesterase (AChE) at cholinergic synapses. This study aims to investigate the impact of repeated dietary exposure to CPF during adulthood on the contractile performance of the diaphragm and hormonal regulation in male rats. Three groups of 10 Sprague–Dawley rats were exposed daily to a diet mixed either with a vehicle (control group), a low dose of CPF (1 mg/kg/day; CPF1 group), or a higher dose of CPF (5 mg/kg/day, CPF5 group), for 6 consecutive weeks. CPF exposure at both doses increased the twitch tension, time to peak tension, half-relaxation time, and fatigability index of the diaphragm. The myofibrillar protein content was not affected in CPF1 group but increased in CPF5 group compared to controls. Alterations in the myosin heavy chain (MHC) isoforms expression were observed in CPF1 group with increased expression of fast-twitch MHC IIa isoform without any significant modifications in the expression of the different MHC isoforms in CPF5 group. Independent of the used doses, CPF exposure induced a decrease in the testosterone level and an increase in the serum corticosterone and growth hormone levels. Chronic exposure of adult male rats to CPF is associated with increased diaphragm contractile performance and fatigability which could be related to perturbations in anabolic and catabolic hormonal balance, and/or possible modification in the excitation–contraction coupling mechanism. This finding provides a deeper insight into the respiratory diaphragm muscle dysfunction associated with long-term dietary CPF exposure.

Tài liệu tham khảo

Uner N, Oruç E, Sevgiler Y (2006) Neurotoxicity evaluation of the organofluorine pesticide etoxazole in the brain of Oreochromis niloticus. Drug Chem Toxicol 29(2):157–165. https://doi.org/10.1080/01480540600561403 Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50. https://doi.org/10.1186/1476-069X-7-50 - O. US EPA (2019), Pesticides Industry Sales and Usage 2006 and 2007 Market Estimates, https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2006-and-2007-market-estimates, accessed February 19, 2019 Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol 17(8):983–998. https://doi.org/10.1021/tx0499259 Sudakin DL, Power LE (2007) Organophosphate exposures in the United States: a longitudinal analysis of incidents reported to poison centers. J Toxicol Environ Health A 70(2):141–147. https://doi.org/10.1080/15287390600755224 Eddleston M, Phillips MR (2004) Self poisoning with pesticides. BMJ 328(7430):42–44. https://doi.org/10.1136/bmj.328.7430.42 El-Nahhal Y, El-Nahhal I (2021) Cardiotoxicity of some pesticides and their amelioration. Environ Sci Pollut Res Int 28(33):44726–44754. https://doi.org/10.1007/s11356-021-14999-9 El-Nahhal Y, Lubbad R, Al-Agha MR (2020) Toxicity evaluation of chlorpyrifos and diuron below maximum residue limits in rabbits. J Toxicol Environ Health Sci 12:177–190. https://doi.org/10.1007/s13530-020-00015-z El-Nahhal Y (2018) Toxicity of some aquatic pollutants to fish. Environ Monit Assess 190:449. https://doi.org/10.1007/s10661-018-6830-0 El-Nahhal Y (2018) Successful management of carbamate poisoning among children: case report from gaza strip. Occupat Diseases Environ Med 6:95–106. https://doi.org/10.4236/odem.2018.63008 Muñoz-Quezada MT, Lucero BA, Iglesias VP et al (2016) Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 22(1):68–79. https://doi.org/10.1080/10773525.2015.1123848 Pilkington A, Buchanan D, Jamal GA et al (2001) An epidemiological study of the relations between exposure to organophosphate pesticides and indices of chronic peripheral neuropathy and neuropsychological abnormalities in sheep farmers and dippers. Occup Environ Med 58(11):702–710. https://doi.org/10.1136/oem.58.11.702 Eaton DL, Daroff RB, Autrup H et al (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol 38(Suppl 2):1–125. https://doi.org/10.1080/10408440802272158 Barr DB, Angerer J (2006) Potential uses of biomonitoring data: a case study using the organophosphorus pesticides chlorpyrifos and malathion. Environ Health Perspect 114(11):1763–1769. https://doi.org/10.1289/ehp.9062 Chlorpyrifos; End-Use Products Cancellation Order, https://www.federalregister.gov/documents/2001/09/12/01-22756/chlorpyrifos-end-use-products-cancellation-order, (accessed April 19, 2017) Chlorpyrifos Market: Global Industry Analysis and Forecast 2017 - 2025, https://www.persistencemarketresearch.com/market-research/chlorpyrifos-market.asp, (accessed March 31, 2019) Ismail M, Khan QM, Ali R, Ali T, Mobeen A (2014) Genotoxicity of chlorpyrifos in freshwater fish Labeo rohita using alkaline single-cell gel electrophoresis (Comet) assay. Drug Chem Toxicol 37(4):466–471. https://doi.org/10.3109/01480545.2014.887093 Tiwari RK, Singh S, Pandey RS (2019) Assessment of the acute toxicity of chlorpyrifos and cypermethrin to Heteropneustes fossilis and their impact on acetylcholinesterase activity. Drug Chem Toxicol 42(5):463–470. https://doi.org/10.1080/01480545.2017.1410171 Padilla S, Marshall RS, Hunter DL et al (2005) Neurochemical effects of chronic dietary and repeated high-level acute exposure to chlorpyrifos in rats. Toxicol Sci 88(1):161–171. https://doi.org/10.1093/toxsci/kfi274 Gordon CJ, Padnos BK (2002) Dietary exposure to chlorpyrifos alters core temperature in the rat. Toxicology 177(2–3):215–226. https://doi.org/10.1016/s0300-483x(02)00227-5 Moser VC, Phillips PM, McDaniel KL, Marshall RS, Hunter DL, Padilla S (2005) Neurobehavioral effects of chronic dietary and repeated high-level spike exposure to chlorpyrifos in rats. Toxicol Sci 86(2):375–386. https://doi.org/10.1093/toxsci/kfi199 López-Granero C, Cardona D, Giménez E et al (2013) Chronic dietary exposure to chlorpyrifos causes behavioral impairments, low activity of brain membrane-bound acetylcholinesterase, and increased brain acetylcholinesterase-R mRNA. Toxicology 308:41–49. https://doi.org/10.1016/j.tox.2013.03.009 Venkatesh S, Ramachandran A, Zachariah A, Oommen A (2009) Mitochondrial ATP synthase inhibition and nitric oxide are involved in muscle weakness that occurs in acute exposure of rats to monocrotophos. Toxicol Mech Methods 19(3):239–245. https://doi.org/10.1080/15376510802455354 Adams GK 3rd, Yamamura HI, O’Leary JF (1976) Recovery of central respiratory function following anticholinesterase intoxication. Eur J Pharmacol 38(1):101–112. https://doi.org/10.1016/0014-2999(76)90206-5 Hallal N, El Khayat El Sabbouri H, Salami A et al (2019) Impacts of prolonged chlorpyrifos exposure on locomotion and slow-and fast- twitch skeletal muscles contractility in rats. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2019.06.006 de Blaquière GE, Williams FM, Blain PG, Kelly SS (1998) A comparison of the electrophysiological effects of two organophosphates, mipafox and ecothiopate, on mouse limb muscles. Toxicol Appl Pharmacol 150(2):350–360. https://doi.org/10.1006/taap.1998.8432 Polla B, D’Antona G, Bottinelli R, Reggiani C (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59(9):808–817. https://doi.org/10.1136/thx.2003.009894 Ivanović SR, Dimitrijević B, Ćupić V et al (2016) Downregulation of nicotinic and muscarinic receptor function in rats after subchronic exposure to diazinon. Toxicol Rep 3:523–530. https://doi.org/10.1016/j.toxrep.2016.06.002 Santos RP, Cavaliere MJ, Puga FR, Narciso ES, Pelegrino JR, Calore EE (2002) Protective effect of early and late administration of pralidoxime against organophosphate muscle necrosis. Ecotoxicol Environ Saf 53(1):48–51. https://doi.org/10.1006/eesa.2001.2138 Darwiche W, Gay-Quéheillard J, Delanaud S et al (2018) Impact of chronic exposure to the pesticide chlorpyrifos on respiratory parameters and sleep apnea in juvenile and adult rats. PLoS ONE 13(1):e0191237. https://doi.org/10.1371/journal.pone.0191237 Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423 Florini JR (1987) Hormonal control of muscle growth. Muscle Nerve 10(7):577–598. https://doi.org/10.1002/mus.880100702 LaFramboise WA, Daood MJ, Guthrie RD et al (1991) Emergence of the mature myosin phenotype in the rat diaphragm muscle. Dev Biol 144(1):1–15. https://doi.org/10.1016/0012-1606(91)90473-g Bright JE, Inns RH, Tuckwell NJ, Griffiths GD, Marrs TC (1991) A histochemical study of changes observed in the mouse diaphragm after organophosphate poisoning. Hum Exp Toxicol 10(1):9–14. https://doi.org/10.1177/096032719101000102 Kelly SS, Mutch E, Williams FM, Blain PG (1994) Electrophysiological and biochemical effects following single doses of organophosphates in the mouse. Arch Toxicol 68(7):459–466. https://doi.org/10.1007/s002040050097 Maurissen JP, Hoberman AM, Garman RH, Hanley TR Jr (2000) Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol Sci 57(2):250–263. https://doi.org/10.1093/toxsci/57.2.250 Mansour SA, Mossa AH (2010) Adverse effects of lactational exposure to chlorpyrifos in suckling rats. Hum Exp Toxicol 29(2):77–92. https://doi.org/10.1177/0960327109357276 Kaur S, Singla N, Dhawan DK (2019) Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem Toxicol 42(2):220–230. https://doi.org/10.1080/01480545.2019.1569022 Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D (2018) Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J Appl Toxicol 38(8):1058–1070. https://doi.org/10.1002/jat.3605 Goel A, Chauhan DP, Dhawan DK (2000) Protective effects of zinc in chlorpyrifos induced hepatotoxicity: a biochemical and trace elemental study. Biol Trace Elem Res 74(2):171–183. https://doi.org/10.1385/BTER:74:2:171 Rasmussen MH (2010) Obesity, growth hormone and weight loss. Mol Cell Endocrinol 316(2):147–153. https://doi.org/10.1016/j.mce.2009.08.017 Bidlingmaier M, Strasburger CJ (2010) Growth hormone. Handb Exp Pharmacol 195:187–200. https://doi.org/10.1007/978-3-540-79088-4_8 Fong Y, Rosenbaum M, Tracey KJ et al (1989) Recombinant growth hormone enhances muscle myosin heavy-chain mRNA accumulation and amino acid accrual in humans. Proc Natl Acad Sci USA 86(9):3371–3374. https://doi.org/10.1073/pnas.86.9.3371 Mazza E, Ghigo E, Boffano G et al (1994) Effects of direct and indirect acetylcholine receptor agonists on growth hormone secretion in humans. Eur J Pharmacol 254(1–2):17–20. https://doi.org/10.1016/0014-2999(94)90364-6 Carr RL, Chambers HW, Guarisco JA, Richardson JR, Tang J, Chambers JE (2001) Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol Sci 59(2):260–267. https://doi.org/10.1093/toxsci/59.2.260 Hallal N, Khalil M, Moustafa ME, Ramadan W, Joumaa WH (2019) Data on dysfunctional muscle contraction and genes contractile expression associated with chlorpyrifos exposure in slow twitch skeletal muscle. Data Brief 27:104775 Marty MS, Andrus AK, Bell MP et al (2012) Cholinesterase inhibition and toxicokinetics in immature and adult rats after acute or repeated exposures to chlorpyrifos or chlorpyrifos-oxon. Regul Toxicol Pharmacol 63(2):209–224. https://doi.org/10.1016/j.yrtph.2012.03.015 Burd PF, Ferry CB (1987) A prolonged contraction at the end-plate region of the diaphragm of rats and mice after anticholinesterases in vitro. J Physiol 391:429–440. https://doi.org/10.1113/jphysiol.1987.sp016747 Costa LG, Schwab BW, Murphy SD (1982) Tolerance to anticholinesterase compounds in mammals. Toxicology 25(2–3):79–97. https://doi.org/10.1016/0300-483x(82)90021-x Rochester DF (1985) The diaphragm: contractile properties and fatigue. J Clin Invest 75(5):1397–1402. https://doi.org/10.1172/JCI111841 Corasaniti MT, Bagetta G, Rodinò P, Gratteri S, Nisticò G (1992) Neurotoxic effects induced by intracerebral and systemic injection of paraquat in rats. Hum Exp Toxicol 11(6):535–539. https://doi.org/10.1177/096032719201100616 Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377. https://doi.org/10.3390/biom5020356 Miller MS, Bedrin NG, Ades PA, Palmer BM, Toth MJ (2015) Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 308(6):C473–C484. https://doi.org/10.1152/ajpcell.00158.2014 Joumaa WH, Bouhlel A, Même W, Léoty C (2002) Methyl jasmonate-induced stimulation of sarcoplasmic reticulum Ca(2+)-ATPase affects contractile responses in rat slow-twitch skeletal muscle. J Pharmacol Exp Ther 300(2):638–646. https://doi.org/10.1124/jpet.300.2.638 Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90(1):345–357. https://doi.org/10.1152/jappl.2001.90.1.345 Chaillou T (2018) Skeletal muscle fiber type in hypoxia: adaptation to high-altitude exposure and under conditions of pathological hypoxia. Front Physiol 9:1450. https://doi.org/10.3389/fphys.2018.01450 Meznaric M, Eržen I, Karen P, Cvetko E (2018) Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle. Ann Anat 216:95–99. https://doi.org/10.1016/j.aanat.2017.12.001 Gea JG (1997) Myosin gene expression in the respiratory muscles. Eur Respir J 10(10):2404–2410. https://doi.org/10.1183/09031936.97.10102404 Joumaa WH, Léoty C (2002) A comparative analysis of the effects of exercise training on contractile responses in fast- and slow-twitch rat skeletal muscles. J Comp Physiol B 172(4):329–338. https://doi.org/10.1007/s00360-002-0259-y Vignaud A, Fougerousse F, Mouisel E et al (2008) Genetic inactivation of acetylcholinesterase causes functional and structural impairment of mouse soleus muscles. Cell Tissue Res 333(2):289–296. https://doi.org/10.1007/s00441-008-0640-6 Joshi SC, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol Ind Health 23(7):439–444. https://doi.org/10.1177/0748233707080908 Peiris DC, Dhanushka T (2017) Low doses of chlorpyrifos interfere with spermatogenesis of rats through reduction of sex hormones. Environ Sci Pollut Res Int 24(26):20859–20867. https://doi.org/10.1007/s11356-017-9617-x Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 91(8):3024–3033. https://doi.org/10.1210/jc.2006-0357 Axell AM, MacLean HE, Plant DR et al (2006) Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 291(3):E506–E516. https://doi.org/10.1152/ajpendo.00058.2006 Turpeinen U, Hämäläinen E (2013) Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab 27(6):795–801. https://doi.org/10.1016/j.beem.2013.10.008 Güven M, Bayram F, Unlühizarci K, Keleştimur F (1999) Endocrine changes in patients with acute organophosphate poisoning. Hum Exp Toxicol 18(10):598–601. https://doi.org/10.1191/096032799678839419 Lapier TK (1997) Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil 17(2):76–84 - Animals (Scientific Procedures) Act 1986, http://www.legislation.gov.uk/ukpga/1986/14/contents/enacted, (accessed November 5, 2019) - Directive 2010/63/EU of the European Parliament and of the Council of 22 September (2010) on the protection of animals used for scientific purposes Text with EEA relevance, vol. OJ L Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999