IDDES simulation of hydrogen-fueled supersonic combustion using flamelet modeling
Tài liệu tham khảo
Wang, 2013, Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor, Int J Hydrog Energy, 38, 5918, 10.1016/j.ijhydene.2013.02.100
Oevermann, 2000, Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling, Aerosp Sci Technol, 4, 463, 10.1016/S1270-9638(00)01070-1
Gamba, 2011, 319
Echekki, 2011
Goldin, 2005, 555
Jin, 2013, DNS investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated flow, Int J Hydrog Energy, 38, 9886, 10.1016/j.ijhydene.2013.05.107
Peters, 1984, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog Energ Combust, 10, 319, 10.1016/0360-1285(84)90114-X
Pierce, 2001
Pierce, 2004, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J Fluid Mech, 504, 73, 10.1017/S0022112004008213
Ihme, 2008, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E, Combust Flame, 115, 90, 10.1016/j.combustflame.2008.04.015
Law, 2006
Ladeinde, 2009, 127
Hou, 2014, Partially premixed flamelet modeling in a hydrogen-fueled supersonic turbulent combustion, Int J Hydrog Energy, 39, 9497, 10.1016/j.ijhydene.2014.04.039
Shur, 2008, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int J Heat Fluid Flow, 29, 1638, 10.1016/j.ijheatfluidflow.2008.07.001
Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 32, 1598, 10.2514/3.12149
Gritskevich, 2012, Development of DDES and IDDES formulations for the k-ω shear stress transport model, Flow Turbul Combust, 88, 431, 10.1007/s10494-011-9378-4
Sarkar, 1992, The pressure-dilatation correlation in compressible mixing layers, Phys Fluids A, 4, 2674, 10.1063/1.858454
Heinz, 2003, A model for the reduction of the turbulent energy redistribution by compressibility, Phys Fluids, 15, 3580, 10.1063/1.1613652
Sinha, 2005, Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions, AIAA J, 43, 586, 10.2514/1.8611
Terrapon, 2009, A flamelet-based model for supersonic combustion, NASA Center for Turbulence Research, Annual research briefs 2009
Ihme, 2010, Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model, Combust Flame, 157, 1850, 10.1016/j.combustflame.2010.07.015
Kazolea, 2012, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coast Eng, 69, 42, 10.1016/j.coastaleng.2012.05.008
Liou, 2001, 2521
Yang, 2008, Effect of turbulent combustion model on simulation of hydrogen supersonic combustion, J Aerosp Power, 23, 605
Choi, 2000, Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: validation, AIAA J, 38, 1179, 10.2514/2.1112
Potturi, 2012, 611
Gamba, 2012, 612