Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients: a randomized controlled trial
Tóm tắt
To compare the in-the-bag stability and visual function of single-piece intraocular lenses (IOLs) and three-piece IOLs. A total of 65 patients with age-related cataracts (80 eyes) were enrolled and randomly assigned to receive in-the-bag implantation of either a single-piece IOL (40 eyes) or a three-piece IOL (40 eyes). Follow-up visits were conducted at 1 week, 1 month and 3 months postoperatively. Visual acuity, refraction and total aberration were examined. IOL position stability (including axial movement, decentration and tilt) was measured using a Scheimpflug imaging system. At the 3-month follow-up visit, single-piece IOLs did not exhibit significant axial movement (0.07 ± 0.30 mm, p = 0.13) compared with their axial position at 1 week postoperatively, whereas three-piece IOLs displayed forward axial movement of −0.22 ± 0.23 mm (p < 0.0001). The mean manifest spherical equivalence (SE) of eyes with single-piece IOL was 0.15 ± 0.18D, whereas in eyes with three-piece IOLs, the mean manifest SE was −0.34 ± 0.15D (p < 0.001). There was no statistically significant difference in IOL decentration, tilt, uncorrected visual acuity, best-corrected visual acuity or total spherical aberration between the two groups. Three months after implantation, single-piece IOLs exhibit better axial stability and more stable refractive outcome than three-piece IOLs, but both IOLs perform equally well in terms of decentration, tilt, visual acuity and total aberration. ClinicalTrial.gov,
NCT02609997
, 11/18/2015, retrospectively registered.
Tài liệu tham khảo
Nagy ZZ, McAlinden C. Femtosecond laser cataract surgery. Eye Vis (Lond). 2015;2:11.
Korynta J, Bok J, Cendelin J. Changes in refraction induced by change in intraocular lens position. J Refract Corneal Surg. 1994;10(5):556–64.
Wang L, Koch DD. Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye. Arch Ophthalmol. 2005;123(9):1226–30.
Rosales P, Marcos S. Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements. J Opt Soc Am A Opt Image Sci Vis. 2006;23(3):509–20.
de Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J Cataract Refract Surg. 2007;33(3):418–29.
Dolgin E. The myopia boom. Nature. 2015;519(7543):276–8.
Schulz KF, Grimes DA. Unequal group sizes in randomised trials: guarding against guessing. Lancet. 2002;359(9310):966–70.
Pan CW, Liu H, Sun HP, Xu Y. Increased difficulties in managing stairs in visually impaired older adults: a community-based survey. PLoS One. 2015;10(11), e0142516.
Wallin TR, Hinckley M, Nilson C, Olson RJ. A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic intraocular lenses. Am J Ophthalmol. 2003;136(4):614–9.
Nejima R, Miyata K, Honbou M, Tokunaga T, Tanabe T, Sato M, Oshika T. A prospective, randomised comparison of single and three piece acrylic foldable intraocular lenses. Br J Ophthalmol. 2004;88(6):746–9.
Lane SS, Burgi P, Milios GS, Orchowski MW, Vaughan M, Schwarte E. Comparison of the biomechanical behavior of foldable intraocular lenses. J Cataract Refract Surg. 2004;30(11):2397–402.
Buckhurst PJ, Wolffsohn JS, Naroo SA, Davies LN. Rotational and centration stability of an aspheric intraocular lens with a simulated toric design. J Cataract Refract Surg. 2010;36(9):1523–8.
Mutlu FM, Erdurman C, Sobaci G, Bayraktar MZ. Comparison of tilt and decentration of 1-piece and 3-piece hydrophobic acrylic intraocular lenses. J Cataract Refract Surg. 2005;31(2):343–7.
McKelvie J, McArdle B, McGhee C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology. 2011;118(9):1724–31.
Barry JC, Branmann K, Dunne MC. Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing. Invest Ophthalmol Vis Sci. 1997;38(8):1476–84.
Barry JC, Dunne M, Kirschkamp T. Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes. Ophthalmic Physiol Opt. 2001;21(6):450–60.
Rosales P, De Castro A, Jimenez-Alfaro I, Marcos S. Intraocular lens alignment from purkinje and Scheimpflug imaging. ClinExpOptom. 2010;93(6):400–8.