Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients: a randomized controlled trial

Springer Science and Business Media LLC - Tập 16 - Trang 1-7 - 2016
Xiaojian Zhong1, Erping Long1, Wan Chen1, Wu Xiang1, Zhaochuan Liu1, Hui Chen1, Jingjing Chen1, Zhuoling Lin1, Haotian Lin1, Weirong Chen1
1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China

Tóm tắt

To compare the in-the-bag stability and visual function of single-piece intraocular lenses (IOLs) and three-piece IOLs. A total of 65 patients with age-related cataracts (80 eyes) were enrolled and randomly assigned to receive in-the-bag implantation of either a single-piece IOL (40 eyes) or a three-piece IOL (40 eyes). Follow-up visits were conducted at 1 week, 1 month and 3 months postoperatively. Visual acuity, refraction and total aberration were examined. IOL position stability (including axial movement, decentration and tilt) was measured using a Scheimpflug imaging system. At the 3-month follow-up visit, single-piece IOLs did not exhibit significant axial movement (0.07 ± 0.30 mm, p = 0.13) compared with their axial position at 1 week postoperatively, whereas three-piece IOLs displayed forward axial movement of −0.22 ± 0.23 mm (p < 0.0001). The mean manifest spherical equivalence (SE) of eyes with single-piece IOL was 0.15 ± 0.18D, whereas in eyes with three-piece IOLs, the mean manifest SE was −0.34 ± 0.15D (p < 0.001). There was no statistically significant difference in IOL decentration, tilt, uncorrected visual acuity, best-corrected visual acuity or total spherical aberration between the two groups. Three months after implantation, single-piece IOLs exhibit better axial stability and more stable refractive outcome than three-piece IOLs, but both IOLs perform equally well in terms of decentration, tilt, visual acuity and total aberration. ClinicalTrial.gov, NCT02609997 , 11/18/2015, retrospectively registered.

Tài liệu tham khảo

Nagy ZZ, McAlinden C. Femtosecond laser cataract surgery. Eye Vis (Lond). 2015;2:11. Korynta J, Bok J, Cendelin J. Changes in refraction induced by change in intraocular lens position. J Refract Corneal Surg. 1994;10(5):556–64. Wang L, Koch DD. Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye. Arch Ophthalmol. 2005;123(9):1226–30. Rosales P, Marcos S. Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements. J Opt Soc Am A Opt Image Sci Vis. 2006;23(3):509–20. de Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J Cataract Refract Surg. 2007;33(3):418–29. Dolgin E. The myopia boom. Nature. 2015;519(7543):276–8. Schulz KF, Grimes DA. Unequal group sizes in randomised trials: guarding against guessing. Lancet. 2002;359(9310):966–70. Pan CW, Liu H, Sun HP, Xu Y. Increased difficulties in managing stairs in visually impaired older adults: a community-based survey. PLoS One. 2015;10(11), e0142516. Wallin TR, Hinckley M, Nilson C, Olson RJ. A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic intraocular lenses. Am J Ophthalmol. 2003;136(4):614–9. Nejima R, Miyata K, Honbou M, Tokunaga T, Tanabe T, Sato M, Oshika T. A prospective, randomised comparison of single and three piece acrylic foldable intraocular lenses. Br J Ophthalmol. 2004;88(6):746–9. Lane SS, Burgi P, Milios GS, Orchowski MW, Vaughan M, Schwarte E. Comparison of the biomechanical behavior of foldable intraocular lenses. J Cataract Refract Surg. 2004;30(11):2397–402. Buckhurst PJ, Wolffsohn JS, Naroo SA, Davies LN. Rotational and centration stability of an aspheric intraocular lens with a simulated toric design. J Cataract Refract Surg. 2010;36(9):1523–8. Mutlu FM, Erdurman C, Sobaci G, Bayraktar MZ. Comparison of tilt and decentration of 1-piece and 3-piece hydrophobic acrylic intraocular lenses. J Cataract Refract Surg. 2005;31(2):343–7. McKelvie J, McArdle B, McGhee C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology. 2011;118(9):1724–31. Barry JC, Branmann K, Dunne MC. Catoptric properties of eyes with misaligned surfaces studied by exact ray tracing. Invest Ophthalmol Vis Sci. 1997;38(8):1476–84. Barry JC, Dunne M, Kirschkamp T. Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes. Ophthalmic Physiol Opt. 2001;21(6):450–60. Rosales P, De Castro A, Jimenez-Alfaro I, Marcos S. Intraocular lens alignment from purkinje and Scheimpflug imaging. ClinExpOptom. 2010;93(6):400–8.