Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1778 - Trang 185-197 - 2008
Ira1, Linda J. Johnston1
1Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6

Tài liệu tham khảo

Simons, 2004, Model systems, lipid rafts and cell membranes, Annu. Rev. Biophys. Biomol. Struct., 33, 269, 10.1146/annurev.biophys.32.110601.141803 Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408 Laude, 2004, Plasma membrane microdomains: organization, function and trafficking, Mol. Membr. Biol., 21, 193, 10.1080/09687680410001700517 Brown, 1998, Functions of lipid rafts in biological membranes, Annu. Rev. Cell Dev. Biol., 14, 111, 10.1146/annurev.cellbio.14.1.111 Edidin, 2003, The state of lipid rafts: from model membranes to cells, Annu. Rev. Biophys. Biomol. Struct., 32, 257, 10.1146/annurev.biophys.32.110601.142439 Cremesti, 2002, Role of sphingomyelinase and ceramide in modulating rafts: do biophysical propoerties determine biologic outcome?, FEBS Lett., 531, 47, 10.1016/S0014-5793(02)03489-0 Goni, 2006, Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids, Biochim. Biophys. Acta, 1758, 1902, 10.1016/j.bbamem.2006.09.011 Bollinger, 2005, Ceramide-enriched membrane domains, Biochim. Biophys. Acta, 1746, 284, 10.1016/j.bbamcr.2005.09.001 Goni, 2002, Sphingomyelinases: enzymology and membrane activity, FEBS Lett., 531, 38, 10.1016/S0014-5793(02)03482-8 Grassme, 2003, Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts, Nat. Med., 9, 322, 10.1038/nm823 Contreras, 2003, Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes, J. Biol. Chem., 278, 37169, 10.1074/jbc.M303206200 Kolesnick, 2000, Compartmentalization of ceramide signaling: physical foundations and biological effects, J. Cell. Physiol., 184, 285, 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3 Lopez-Montero, 2005, Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes, J. Biol. Chem., 280, 25811, 10.1074/jbc.M412052200 Contreras, 2005, Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes, Biophys. J., 88, 348, 10.1529/biophysj.104.050690 Megha, 2006, Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees, J. Biol. Chem., 281, 21903, 10.1074/jbc.M600395200 Megha, 2004, Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function, J. Biol. Chem., 279, 9997, 10.1074/jbc.M309992200 Chiantia, 2006, Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS, Biophys. J., 90, 4500, 10.1529/biophysj.106.081026 Ali, 2006, Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures, Biochemistry, 45, 12629, 10.1021/bi060610x Yu, 2005, Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1, J. Lipid Res., 46, 1678, 10.1194/jlr.M500060-JLR200 Holopainen, 2000, Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes, Biophys. J., 78, 830, 10.1016/S0006-3495(00)76640-9 Nurminen, 2002, Observation of topical catalysis by sphingomyelinase coupled to microspheres, J. Am. Chem. Soc., 124, 12129, 10.1021/ja017807r Taniguchi, 2006, Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide, Biochim. Biophys. Acta, 1758, 145, 10.1016/j.bbamem.2006.02.026 Silva, 2006, Ceramide-platform formation and induced biophysical changes in a fluid phospholipid membrane, Mol. Membr. Biol., 23, 137, 10.1080/09687860500439474 Ira, 2006, Ceramide promotes restructuring of model raft membranes, Langmuir, 22, 11284, 10.1021/la061636s Lopez-Mentero, 2007, Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes, Biochim. Biophys. Acta, 1768, 553, 10.1016/j.bbamem.2007.01.001 Silva, 2007, Ceramide-domain formation and collapse in lipid rafts: Membrane reorganization by an apoptotic lipid, Biophys. J., 92, 502, 10.1529/biophysj.106.091876 Pike, 2006, Rafts defined: a report on the Keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597, 10.1194/jlr.E600002-JLR200 Connell, 2006, The atomic force microscope as a tool for studying phase separation in lipid membranes, Mol. Membr. Biol., 23, 17, 10.1080/09687860500501158 Dufrene, 2000, Advances in the characterization of supported lipid films with the atomic force microscope, Biochim. Biophys. Acta, 1509, 14, 10.1016/S0005-2736(00)00346-1 Milhiet, 2003, AFM imaging of lipid domains, TheScientificWorldJOURNAL, 3, 59, 10.1100/tsw.2003.12 Johnston, 2007, Nanoscale imaging of domains in supported lipid membranes, Langmuir, 23, 5886, 10.1021/la070108t Yuan, 2002, The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes, Biophys. J., 82, 2526, 10.1016/S0006-3495(02)75596-3 Shaw, 2006, Coupling evanescent-wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF-AFM, Surf. Interface Anal., 38, 1459, 10.1002/sia.2444 Rinia, 2001, Visualizing detergent resistant domains in model membranes with atomic force microscopy, FEBS Lett., 501, 92, 10.1016/S0014-5793(01)02636-9 Veatch, 2005, Seeing spots: complex phase behavior in simple membranes, Biochim. Biophys. Acta, 1746, 172, 10.1016/j.bbamcr.2005.06.010 van Duyl, 2003, Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol, FEBS Lett., 547, 101, 10.1016/S0014-5793(03)00678-1 Milhiet, 2002, Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts, EMBO Rep., 3, 485, 10.1093/embo-reports/kvf096 Hannun, 1996, Functions of ceramide in coordinating cellular responses to stress, Science, 274, 1855, 10.1126/science.274.5294.1855 Richter, 2006, Formation of solid-supported lipid bilayers: an integrated view, Langmuir, 22, 3497, 10.1021/la052687c Shah, 1995, Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration, J. Lipid Res., 36, 1936, 10.1016/S0022-2275(20)41112-5 Goni, 2003, Interaction of phospholipases C and sphingomyelinase with liposomes, Methods Enzymol., 372, 3, 10.1016/S0076-6879(03)72001-1 Stottrup, 2004, Nonequilibrium behavior in supported lipid membranes containing cholesterol, Biophys. J., 86, 2942, 10.1016/S0006-3495(04)74345-3 Rinia, 2001, Imaging domains in model membranes with atomic force microscopy, FEBS Lett., 504, 194, 10.1016/S0014-5793(01)02704-1 Maulik, 1996, N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine, Biochemistry, 35, 8025, 10.1021/bi9528356 Lin, 2006, Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study, Biophys. J., 90, 228, 10.1529/biophysj.105.067066 Choucair, 2007, Preferential accumulation of Aβ(1–42) on gel phase domains of lipid bilayers: An AFM and fluorescence study, Biochim. Biophys. Acta, 1768, 146, 10.1016/j.bbamem.2006.09.005 Blanchette, 2006, Galactosylceramide domain microstructure: Impact of cholesterol and nucleation/growth conditions, Biophys. J., 90, 4466, 10.1529/biophysj.105.072744 Carrer, 2006, Effects of a short chain ceramide on bilayer domain formation, thickness and chain mobility: DMPC and asymmetric ceramide mixtures, Biophys. J., 90, 2394, 10.1529/biophysj.105.074252 Veatch, 2005, Miscibility phase diagrams of giant vesicles containing sphingomyelin, Phys. Rev. Lett., 94, 1 Sot, 2006, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers, Biophys. J., 90, 903, 10.1529/biophysj.105.067710 Fanani, 2002, Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers, Biophys. J., 83, 3416, 10.1016/S0006-3495(02)75341-1 Holopainen, 1998, Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane, Biochemistry, 37, 17562, 10.1021/bi980915e Huang, 1996, Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2, Biochem. Biophys. Res. Commun., 220, 834, 10.1006/bbrc.1996.0490 Huang, 1999, Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers, Biophys. J., 77, 1489, 10.1016/S0006-3495(99)76996-1 Bai, 1997, Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles, Biochemistry, 36, 8840, 10.1021/bi970145r Rinia, 1999, Blistering of Langmuir–Blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy, Biophys. J., 77, 1683, 10.1016/S0006-3495(99)77015-3 Cambrea, 2007, Formation of three-dimensional structures in supported lipid bilayers, Biophys. J., 92, 3587, 10.1529/biophysj.106.101139 Hartel, 2005, Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers, Biophys. J., 88, 287, 10.1529/biophysj.104.048959 Montes, 2002, Membrane restructuring via ceramide results in enhanced solute efflux, J. Biol. Chem., 277, 11788, 10.1074/jbc.M111568200