An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid
Tài liệu tham khảo
Choi, 2001, Anomalously thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272
Mahian, 2013, Dispersion of ZnO nanoparticles in a mixture of ethylene glycol-water, exploration of temperature-dependent density, and sensitivity analysis, J. Clust. Sci., 1
Hemmat Esfe, 2015, Thermal conductivity and viscosity of Mg (OH) 2-ethylene glycol nanofluids, J. Therm. Anal. Calorim., 120, 1145, 10.1007/s10973-015-4417-3
Hemmat Esfe, 2015, Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods, Int. Commun. Heat Mass Transfer, 63, 35, 10.1016/j.icheatmasstransfer.2015.01.001
Hemmat Esfe, 2015, Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid, Int. Commun. Heat Mass Transfer, 65, 47, 10.1016/j.icheatmasstransfer.2015.04.006
Hemmat Esfe, 2015, Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles, Int. J. Heat Mass Transf., 88, 728, 10.1016/j.ijheatmasstransfer.2015.05.010
Hemmat Esfe, 2015, Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation, Int. Commun. Heat Mass Transfer, 66, 100, 10.1016/j.icheatmasstransfer.2015.05.014
Hemmat Esfe, 2014, Experimental investigation and proposed correlations for temperature-dependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles, J. Heat Mass Transfer Res., 1, 47
Hemmat Esfe, 2014, An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Exp. Thermal Fluid Sci., 55, 1, 10.1016/j.expthermflusci.2014.02.011
Abu-nada, 2008, Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat Fluid Flow, 29, 242, 10.1016/j.ijheatfluidflow.2007.07.001
Kuznetsov, 2010, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci., 49, 243, 10.1016/j.ijthermalsci.2009.07.015
Buongiorno, 2005, Nanofluid coolants for advanced nuclear power plants, International Congress on Advances in Nuclear Power Plants
Hemmat Esfe, 2014, Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow, Exp. Thermal Fluid Sci., 52, 68, 10.1016/j.expthermflusci.2013.08.023
Hemmat Esfe, 2014, Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, Int. Commun. Heat Mass Transfer, 58, 176, 10.1016/j.icheatmasstransfer.2014.08.037
Kakac, 2009, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52, 3187, 10.1016/j.ijheatmasstransfer.2009.02.006
Mahian, 2013, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582, 10.1016/j.ijheatmasstransfer.2012.10.037
Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transf., 128, 240, 10.1115/1.2150834
Yu, 2011, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A, 375, 1323, 10.1016/j.physleta.2011.01.040
Patel, 2003, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 83, 2931, 10.1063/1.1602578
Hemmat Esfe, 2014, Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, Int. J. Heat Mass Transf., 73, 186, 10.1016/j.ijheatmasstransfer.2014.01.069
Sundar, 2013, Empirical and theoretical correlations on viscosity of nanofluids: a review, Renew. Sust. Energ. Rev., 25, 670, 10.1016/j.rser.2013.04.003
Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei, 4, 227, 10.2963/jjtp.7.227
Hemmat Esfe, 2015, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid, Int. Commun. Heat Mass Transfer, 66, 189, 10.1016/j.icheatmasstransfer.2015.06.003
White, 2006
Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam., 1, 187, 10.1021/i160003a005
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801
Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, J. Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559
Syam Sundar, 2012, Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid, Exp. Thermal Fluid Sci., 37, 65, 10.1016/j.expthermflusci.2011.10.004
Kayhani, 2012, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, Int. Commun. Heat Mass Transfer, 39, 456, 10.1016/j.icheatmasstransfer.2012.01.004
Suresh, 2011, Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp. Thermal Fluid Sci., 35, 542, 10.1016/j.expthermflusci.2010.12.008
Abbasian Arani, 2013, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid, Exp. Thermal Fluid Sci., 44, 520, 10.1016/j.expthermflusci.2012.08.014
Nguyen, 2007, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27, 1501, 10.1016/j.applthermaleng.2006.09.028
Hashemi, 2012, An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux, Int. Commun. Heat Mass Transfer, 39, 144, 10.1016/j.icheatmasstransfer.2011.09.002