Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loading
Tài liệu tham khảo
Fawcett, 2006
Miller, 2015
Wisnom, 2009, The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates, Compos Part A Appl Sci Manuf, 40, 335, 10.1016/j.compositesa.2008.12.013
Davies, 1995, Impact damage prediction in carbon composite structures, Int J Impact Eng, 16, 22, 10.1016/0734-743X(94)00039-Y
Schoeppner, 2000, Delamination threshold loads for low velocity impact on composite laminates, Compos Part A Appl Sci Manuf, 31, 13, 10.1016/S1359-835X(00)00061-0
Hou, 2000, Prediction of impact damage in composite plates, Compos Sci Technol, 60, 9, 10.1016/S0266-3538(99)00126-8
Abrate, 1991, Impact on laminated composite materials, Appl Mech Rev, 44, 155, 10.1115/1.3119500
Aslan, 2003, The response of laminated composite plates under low-velocity impact loading, Compos Struct, 59, 119, 10.1016/S0263-8223(02)00185-X
Nishikawa, 2011, Finite-element simulation for modeling composite plates subjected to soft-body, high-velocity impact for application to bird-strike problem of composite fan blades, Compos Struct, 93, 1416, 10.1016/j.compstruct.2010.11.012
Cartié, 2004, Mechanisms of crack bridging by composite and metallic rods, Compos Part A Appl Sci Manuf, 35, 1325, 10.1016/j.compositesa.2004.03.006
Mouritz, 2007, Review of z-pinned composite laminates, Compos Part A Appl Sci Manuf, 38, 2383, 10.1016/j.compositesa.2007.08.016
Liu, 2007, Experimental study on effect of loading rate on mode I delamination of z-pin reinforced laminates, Compos Sci Technol, 67, 1294, 10.1016/j.compscitech.2006.10.001
Partridge, 2005, Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance, Compos Part A Appl Sci Manuf, 36, 55, 10.1016/S1359-835X(04)00180-0
Cartié, 2009, Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinning, Eng Fract Mech, 76, 2834, 10.1016/j.engfracmech.2009.07.018
Pegorin, 2014, Mode II interlaminar fatigue properties of z-pinned carbon fibre reinforced epoxy composites, Compos Part A Appl Sci Manuf, 67, 8, 10.1016/j.compositesa.2014.08.008
Yasaee, 2017, Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated composites, Int J Impact Eng, 107, 1, 10.1016/j.ijimpeng.2017.05.003
Yasaee, 2014, Experimental characterisation of mixed mode traction–displacement relationships for a single carbon composite Z-pin, Compos Sci Technol, 94, 123, 10.1016/j.compscitech.2014.02.001
Cui, 2011, Bridging micromechanisms of Z-pin in mixed mode delamination, Compos Struct, 93, 11, 10.1016/j.compstruct.2011.06.004
Cui, 2017, Bridging mechanisms of through-thickness reinforcement in dynamic mode I&II delamination, Compos Part A Appl Sci Manuf, 99, 198, 10.1016/j.compositesa.2017.04.009
Pegorin, 2015, Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites, Compos Part B Eng, 78, 298, 10.1016/j.compositesb.2015.03.093
Dai, 2006, Experimental study on z-pin bridging law by pullout test, Compos Sci Technol, 64, 2451, 10.1016/j.compscitech.2004.04.005
Cui, 2018, Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delamination, Compos Part A Appl Sci Manuf, 106, 24, 10.1016/j.compositesa.2017.11.017
Ponnusami, 2018, A wedge-DCB test methodology to characterise high rate mode-I interlami- nar fracture properties of fibre composites, EPJ Web Conf. DYMAT 2018, 1
ASTM. ASTM D 7905 D7905M - 14. Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer, n.d. doi:10.1520/D7905.
de Moura, 2017, Mixed-mode I+II fracture characterization of a hybrid carbon-epoxy/cork laminate using the single-leg bending test, Compos Sci Technol, 141, 24, 10.1016/j.compscitech.2017.01.001
Cui, 2016, Effect of strain rate and fibre rotation on the in-plane shear response of ±45° laminates in tension and compression tests, Compos Sci Technol, 135, 106, 10.1016/j.compscitech.2016.09.016
Koerber, 2010, High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation, Mech Mater, 42, 1004, 10.1016/j.mechmat.2010.09.003
de Moura, 2009, Pure mode II fracture characterization of composite bonded joints, Int J Solids Struct, 46, 1589, 10.1016/j.ijsolstr.2008.12.001
C. Materials, Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites 1, 01; 2008.
D7905/D7905M-14, ASTM D7905/D7905M-14. Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, ASTM B. Stand. 15.03 (2014) 1–18. doi:10.1520/D7905.
Leffler, 2007, Shear behaviour of adhesive layers, Int J Solids Struct, 44, 530, 10.1016/j.ijsolstr.2006.04.036
Cui, 2014, Constitutive law of adhesive layer measured with mixed mode bending test, Eng Fract Mech, 127, 235, 10.1016/j.engfracmech.2014.06.011
Sorensen, 2008, Bridging tractions in mode I delamination: Measurements and simulations, Compos Sci Technol, 68, 2350, 10.1016/j.compscitech.2007.08.024
Svensson, 2014, Measurement of cohesive laws for interlaminar failure of CFRP, Compos Sci Technol, 100, 53, 10.1016/j.compscitech.2014.05.031
Czabaj, 2013, Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite, Compos Sci Technol, 89, 15, 10.1016/j.compscitech.2013.09.008
De Verdiere, 2012, Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/Mode II, Eng Fract Mech, 96, 1, 10.1016/j.engfracmech.2011.12.011
Colin de Verdiere, 2012, Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non crimp fabric composites: Mode I, Eng Fract Mech, 96, 11, 10.1016/j.engfracmech.2012.05.015