Establishing a framework for best practices for quality assurance and quality control in untargeted metabolomics

Metabolomics - Tập 20 - Trang 1-13 - 2024
Jonathan D. Mosley1, Tracey B. Schock2, Chris W. Beecher3, Warwick B. Dunn4, Julia Kuligowski5, Matthew R. Lewis6,7, Georgios Theodoridis8, Candice Z. Ulmer Holland9, Dajana Vuckovic10, Ian D. Wilson4,11, Krista A. Zanetti12
1Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, USA
2Chemical Sciences Division, National Institute of Standards and Technology (NIST), Charleston, USA
3IROA Technologies, Chapel Hill, USA
4Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
5Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
6Life Sciences Mass Spectrometry Division, Bruker UK Limited, Coventry, UK
7National Phenome Centre & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
8BIOMIC_Auth, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Aristotle University Thessaloniki, Thermi, Greece
9Eastern Laboratory, Office of Public Health Science (OPHS), Food Safety and Inspection Service (FSIS), Department of Agriculture (USDA), Athens, USA
10Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
11Division of Systems Medicine, Department of Metabolism Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
12Office of Nutrition Research, Office of the Director, Division of Program Coordination, Planning, and Strategic Initiatives, National Institutes of Health, Bethesda, USA

Tóm tắt

Quality assurance (QA) and quality control (QC) practices are key tenets that facilitate study and data quality across all applications of untargeted metabolomics. These important practices will strengthen this field and accelerate its success. The Best Practices Working Group (WG) within the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) focuses on community use of QA/QC practices and protocols and aims to identify, catalogue, harmonize, and disseminate current best practices in untargeted metabolomics through community-driven activities. A present goal of the Best Practices WG is to develop a working strategy, or roadmap, that guides the actions of practitioners and progress in the field. The framework in which mQACC operates promotes the harmonization and dissemination of current best QA/QC practice guidance and encourages widespread adoption of these essential QA/QC activities for liquid chromatography-mass spectrometry. Community engagement and QA/QC information gathering activities have been occurring through conference workshops, virtual and in-person interactive forum discussions, and community surveys. Seven principal QC stages prioritized by internal discussions of the Best Practices WG have received participant input, feedback and discussion. We outline these stages, each involving a multitude of activities, as the framework for identifying QA/QC best practices. The ultimate planned product of these endeavors is a “living guidance” document of current QA/QC best practices for untargeted metabolomics that will grow and change with the evolution of the field.

Tài liệu tham khảo

Alarcon-Barrera, J. C., Kostidis, S., Ondo-Mendez, A., & Giera, M. (2022). Recent advances in metabolomics analysis for early drug development. Drug Discov Today, 27, 1763–1773. Beger, R. D., Dunn, W. B., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C. B., Dasari, S., Derr, L., Evans, A., Fischer, S., Flynn, T., Hartung, T., Herrington, D., Higashi, R., Hsu, P. C., Jones, C., Kachman, M., Karuso, H., Kruppa, G., Lippa, K., Maruvada, P., Mosley, J., Ntai, I., O’Donovan, C., Playdon, M., Raftery, D., Shaughnessy, D., Souza, A., Spaeder, T., Spalholz, B., Tayyari, F., Ubhi, B., Verma, M., Walk, T., Wilson, I., Witkin, K., Bearden, D. W., & Zanetti, K. A. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15, 4. Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R., & Dunn, W. B. (2018). Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14, 72. Broeckling, C. D., Beger, R., Cheng, L. L., Cumeras, R., Cuthbertson, D., Dasari, S., Davis, W. C., Dunn, W. B., Evans, A., Fernández-Ochoa, A., Gika, H., Goodacre, R., Goodman, K. D., Gouveia, G. J., Hsu, P. C., Kirwan, J. A., Kodra, D., Kuligowski, J., Lan, R. S., Monge, M.E., Moussa, L.W., Nair, S., Reisdorph, N., Sherrod, S.D., Ulmer, C.Z., Vuckovic, D., Yu, L.R., Zhang, B., Theodoridis, G. & Mosley, J. D. (2023). Current practices in LC-MS untargeted metabolomics: A scoping review on the use of pooled quality control samples. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.3c02924 Clinical and Laboratory Standards Institute (2021). Dried blood spot specimen collection for newborn screening. (CLSI standard NBS01). Retrived from https://clsi.org/standards/products/newborn-screening/documents/nbs01/ Dudzik, D., Barbas-Bernardos, C., Garcia, A., & Barbas, C. (2018). Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. Journal of Pharmaceutical and Biomedical Analysis, 147, 149–173. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., Goodacre, R., & The Human Serum Metabolome (HUSERMET) Consortium (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083. Dunn, W. B., Broadhurst, D. I., Edison, A., Guillou, C., Viant, M. R., Bearden, D. W., & Beger, R. D. (2017). Quality assurance and quality control processes: Summary of a metabolomics community questionnaire. Metabolomics, 13, 1–6. Dunn, W. B., Kuligowski, J., Lewis, M. R., Mosley, J., Schock, T. B., Holland, U., Vuckovic, C. Z., & Zanetti, K. A. (2023). Metabolomics 2022 workshop report: State of QA/QC best practices in LC-MS-based untargeted metabolomics, informed through mQACC community engagement initiatives. Metabolomics, 19, 93. Evans, A. M., O’Donovan, C., Playdon, M., Beecher, C., Beger, R. D., Bowden, J. A., Broadhurst, D., Clish, C. B., Dasari, S., Dunn, W. B., Griffin, J. L., Hartung, T., Hsu, P. C., Huan, T., Jans, J., Jones, C. M., Kachman, M., Kleensang, A., Lewis, M. R., Monge, M.E., Mosley, J.D., Taylor, E., Tayyari, F., Theodoridis, G., Torta, F., Ubhi, B.K., & Vuckovic, D. on behalf of the Metabolomics Quality Assurance, Quality Control Consortium (mQACC) (2020). Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based untargeted metabolomics practitioners. Metabolomics, 16, 113. Fiehn, O. (2002). Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171. Fiehn, O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114(30 4 1–30 4), 32. Food and Drug Administration (2001). Guidance for industry: bioanalytical method validation. Retrieved from https://www.moh.gov.bw/Publications/drug_regulation/Bioanalytical%20Method%20Validation%20FDA%202001.pdf. Food and Drug Administration (2018). Guidance for industry: bioanalytical method validation. Retrieved from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf Gika, H. G., Theodoridis, G. A., Wingate, J. E., & Wilson, I. D. (2007). Within-day reproducibility of an HPLC-MS-Based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 6, 3291–3303. Goodman, J., Cowan, K. J., Golob, M., Karlsson, L., Kunz, U., Nelson, R., Ulrichts, H., Stevenson, L., Terry, L., & Timmerman, P. (2020). Update to the European Bioanalysis Forum recommendation on biomarkers assays; bringing context of use into practice. Bioanalysis, 12, 1427–1437. Haug, K., Cochrane, K., Nainala, V. C., Williams, M., Chang, J. K., Jayaseelan, K. V., & O’Donovan, C. (2020). MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Research, 48, D440–D444. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (2022). Bioanalytical Method Validation and Study Sample Analysis (ICH Harmonised Guideline No. M10). Retrieved from https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf. International Organization for Standardization (2015). Quality management systems-fundamentals and vocabulary. (ISO Standard No. 9000). Retrieved from https://www.iso.org/standard/45481.html. International Organization for Standardization (2021). Molecular in vitro diagnostic examinations – Specifications for pre-examination processes in metabolomics in urine, venous blood serum and plasma. (ISO Standard No. 23118). Retrieved from https://clsi.org/standards/products/iso-documents/documents/iso-23118-2021/. Kirwan, J. A., Broadhurst, D. I., Davidson, R. L., & Viant, M. R. (2013). Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 405, 5147–5157. Kirwan, J. A., Gika, H., Beger, R. D., Bearden, D., Dunn, W. B., Goodacre, R., Theodoridis, G., Witting, M., Yu, L. R., & Wilson, I. D. on behalf of the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) (2022). Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management. Metabolomics, 18, 70. Kodra, D., Pousinis, P., Vorkas, P. A., Kademoglou, K., Liapikos, T., Pechlivanis, A., Virgiliou, C., Wilson, I. D., Gika, H., & Theodoridis, G. (2022). Is current practice adhering to Guidelines proposed for metabolite identification in LC-MS untargeted metabolomics? A Meta-analysis of the literature. Journal of Proteome Research, 21, 590–598. Mar (2023). Oxford English Dictionary. Oxford University Press. Retrieved December 4, 2023, from https://www.oed.com/ Metabolomics Quality Assurance and Quality Control Consortium(mQACC) (2023a). Retrieved December 4, 2023, from https://www.mqacc.org/ National Institutes of Health (2023). NIH Data Management and Sharing (DMS) Policy. Retrieved from https://sharing.nih.gov/data-management-and-sharing-policy Nicholson, J. K., O’Flynn, M. P., Sadler, P. J., Macleod, A. F., Juul, S. M., & Sonksen, P. H. (1984). Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. The Biochemical Journal, 217, 365–375. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189. Patel, M. K., Pandey, S., Kumar, M., Haque, M. I., Pal, S., & Yadav, N. S. (2021). Plants metabolome study: Emerging tools and techniques. Plants (Basel), 10, 2409. Pauling, L., Robinson, A. B., Teranishi, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA, 68, 2374–2376. Sands, C. J., Gomez-Romero, M., Correia, G., Chekmeneva, E., Camuzeaux, S., Izzi-Engbeaya, C., Dhillo, W. S., Takats, Z., & Lewis, M. R. (2021). Representing the metabolome with high fidelity: Range and response as quality control factors in LC-MS-based global profiling. Analytical Chemistry, 93, 1924–1933. Sangster, T., Major, H., Plumb, R., Wilson, A. J., & Wilson, I. D. (2006). A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. The Analyst, 131, 1075–1078. Standards and Certification: Laboratory Requirements. (1988). Code of Federal Regulations, title 42 (1988): 493. Retrieved from https://www.cdc.gov/clia/law-regulations.html Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J. J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. The Metabolomics Workbench (2023b). Retrieved December 4, 2023, from https://www.metabolomicsworkbench.org/ Tsikas, D. (2018). Bioanalytical method validation of endogenous substances according to guidelines by the FDA and other organizations: Basic need to specify concentration ranges. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1093, 80–81. Viant, M. R., Ebbels, T. M. D., Beger, R. D., Ekman, D. R., Epps, D. J. T., Kamp, H., Leonards, P. E. G., Loizou, G. D., MacRae, J. I., van Ravenzwaay, B., Rocca-Serra, P., Salek, R. M., Walk, T., & Weber, R. J. M. (2019). Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nature Communications, 10, 3041. Vuckovic, D. (2012). Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 1523–1548. Wilson, I. D., Theodoridis, G., & Virgiliou, C. (2021). A perspective on the standards describing mass spectrometry-based metabolic phenotyping (metabolomics/metabonomics) studies in publications. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1164, 122515. Wishart, D. S., Cheng, L. L., Copie, V., Edison, A. S., Eghbalnia, H. R., Hoch, J. C., Gouveia, G. J., Pathmasiri, W., Powers, R., Schock, T. B., Sumner, L. W., & Uchimiya, M. (2022). NMR and Metabolomics-A Roadmap for the Future. Metabolites, 12, 678. Zhou, B., Xiao, J. F., Tuli, L., & Ressom, H. W. (2012). LC-MS-based metabolomics. Molecular Biosystems, 8, 470–481.