Non-uniform interpolatory curve subdivision with edge parameters built upon compactly supported fundamental splines

Springer Science and Business Media LLC - Tập 51 - Trang 781-808 - 2011
Carolina Vittoria Beccari1, Giulio Casciola1, Lucia Romani2
1Dipartimento di Matematica, Università di Bologna, Bologna, Italy
2Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Milano, Italy

Tóm tắt

In this paper we present a family of Non-Uniform Local Interpolatory (NULI) subdivision schemes, derived from compactly supported interpolatory fundamental splines with non-uniform knots (NULIFS). For this spline family, the knot-partition is defined by a sequence of break points and by one additional knot, arbitrarily placed along each knot-interval. The resulting refinement algorithms are linear and turn out to contain a set of edge parameters that, when fixed to a value in the range [0,1], allow us to achieve special shape features by simply moving each auxiliary knot between the break points. Among all the members of this new family of schemes, we will then especially analyze the NULI 4-point refinement. This subdivision scheme has all the fundamental features of the quadratic fundamental spline basis it is originated from, namely compact support, C 1 smoothness, second order polynomials reproduction and approximation order 3. In addition the NULI 4-point subdivision algorithm has the possibility of setting consecutive edge parameters to simulate double and triple knots—that are not considered by the authors of the corresponding spline basis—thus allowing for limit curves with crease vertices, without using an ad hoc mask. Numerical examples and comparisons with other methods will be given to the aim of illustrating the performance of the NULI 4-point scheme in the case of highly non-uniform initial data.

Tài liệu tham khảo

Beccari, C., Casciola, G., Romani, L.: A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Comput. Aided Geom. Des. 24(1), 1–9 (2007) Beccari, C., Casciola, G., Romani, L.: An interpolating 4-point ternary non-stationary subdivision scheme with tension control. Comput. Aided Geom. Des. 24(4), 210–219 (2007) Beccari, C., Casciola, G., Romani, L.: Shape controlled interpolatory ternary subdivision. Appl. Math. Comput. 215(3), 916–927 (2009) Cashman, T.J., Dodgson, N.A., Sabin, M.A.: A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Comput. Aided Geom. Des. 26(1), 94–104 (2009) Chaikin, G.M.: An algorithm for high speed curve generation. Comput. Graph. Image Process. 3, 346–349 (1974) Chen, J.J., Chan, A.K., Chui, C.K.: A local interpolatory cardinal spline method for the determination of eigenstates in quantum-well structures with arbitrary potential profiles. IEEE J. Quantum Electron. 30(2), 269–274 (1994) Chu, K.-C.: B3-splines for interactive curve and surface fitting. Comput. Graph. 14(2), 281–288 (1990) Chui, C.K.: Vertex splines and their applications to interpolation of discrete data. In: Dahmen, W., Gasca, M., Micchelli, C.A. (eds.) Computation of Curves and Surfaces, pp. 137–181 (1990) Chui, C.K., De Villiers, J.M.: Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets. Math. Comput. 65(213), 99–114 (1996) Conti, C., Morandi, R.: Piecewise C 1-shape-preserving Hermite interpolation. Computing 56(4), 323–341 (1996) Dahmen, W., Goodman, T.N.T., Micchelli, C.A.: Compactly supported fundamental functions for spline interpolation. Numer. Math. 52, 639–664 (1988) Daniel, S., Shunmugaraj, P.: An approximating C 2 non-stationary subdivision scheme. Comput. Aided Geom. Des. 26(7), 810–821 (2009) Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Constr. Approx. 15(3), 381–426 (1999) Dubuc, S.: Interpolation through an iterative scheme. J. Math. Anal. Appl. 114(1), 185–204 (1986) Dyn, N., Levin, D., Micchelli, C.A.: Using parameters to increase smoothness of curves and surfaces generated by subdivision. Comput. Aided Geom. Des. 7, 129–140 (1990) Dyn, N., Gregory, J.A., Levin, D.: Piecewise uniform subdivision schemes. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 111–120. Vanderbilt University Press, Nashville (1995) Dyn, N., Floater, M., Hormann, K.: Four-point curve subdivision based on iterated chordal and centripetal parameterizations. Comput. Aided Geom. Des. 26(3), 279–286 (2009) Floater, M.: On the deviation of a parametric cubic spline interpolant from its data polygon. Comput. Aided Geom. Des. 25, 148–156 (2008) Hassan, M.F., Ivrissimitzis, I.P., Dodgson, N.A., Sabin, M.A.: An interpolating 4-point C 2 ternary stationary subdivision scheme. Comput. Aided Geom. Des. 19(1), 1–18 (2002) Kuijt, F., van Damme, R.: Shape preserving interpolatory subdivision schemes for non uniform data. J. Approx. Theory 114(1), 1–32 (2002) Kuznetsov, E.B., Yakimovich, A.Yu.: The best parameterization for parametric interpolation. J. Comput. Appl. Math. 191(2), 239–245 (2006) Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided Des. 21(6), 363–370 (1989) Levin, A.: Combined subdivision schemes. PhD thesis, Tel-Aviv University (2000) Levin, A.: Polynomial generation and quasi-interpolation in stationary non-uniform subdivision. Comput. Aided Geom. Des. 20(1), 41–60 (2003) Levin, A.: The importance of polynomial reproduction in piecewise uniform subdivision. In: Martin, R., Bez, H., Sabin, M.A. (eds.) Mathematics of Surfaces XI, Proceedings of 11th IMA International Conference, pp. 272–307. Springer, Berlin (2005) Lyche, T., Merrien, J.-L.: C 1 interpolatory subdivision with shape constraints for curves. SIAM J. Numer. Anal. 44, 1095–1121 (2006) Manni, C.: On shape preserving C 2 Hermite interpolation. BIT Numer. Math. 41(1), 127–148 (2001) Marinov, M., Dyn, N., Levin, D.: Geometrically controlled 4-point interpolatory schemes. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 301–315. Springer, Berlin (2005) Merrien, J.-L., Sablonnière, P.: Monotone and convex C 1 Hermite interpolants generated by a subdivision algorithm. Constr. Approx. 19, 279–298 (2003) Romani, L.: From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms. J. Comput. Appl. Math. 224(1), 383–396 (2009) Schaefer, S., Goldman, R.: Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aided Geom. Des. 26(1), 75–81 (2009) Sederberg, T.W., Zheng, J., Sewell, D., Sabin, M.: Non-uniform recursive subdivision surfaces. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 387–394 (1998) Warren, J.: Binary subdivision schemes for functions over irregular knot sequences. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in CAGD III, pp. 543–562. Vanderbilt University Press, Nashville (1995)