Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications
Tài liệu tham khảo
Davis, 2002, Ordered porous materials for emerging applications, Nature, 417, 813, 10.1038/nature00785
Liu, 2010, Recent developments in bio-inspired special wettability, Chem Soc Rev, 39, 3240, 10.1039/b917112f
Xia, 2008, Bio-inspired, smart, multiscale interfacial materials, Adv Mater, 20, 2842, 10.1002/adma.200800836
Colombo, 2008, In praise of pores, Science, 322, 381, 10.1126/science.1162962
Adiga, 2009, Nanoporous membranes for medical and biological applications, Wiley Interdiscipl Rev: Nanomed Nanobiotechnol, 1, 568, 10.1002/wnan.50
Majd, 2010, Applications of biological pores in nanomedicine, sensing, and nanoelectronics, Current Opin Biotechnol, 21, 439, 10.1016/j.copbio.2010.05.002
Stroeve, 2011, Biotechnical and other applications of nanoporous membranes, Trends Biotechnol, 29, 259, 10.1016/j.tibtech.2011.02.002
Whitesides, 1991, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science, 254, 1312, 10.1126/science.1962191
Cölfen, 2003, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew Chem Int Ed, 42, 2350, 10.1002/anie.200200562
Gomar-Nadal, 2008, Assembly of functional molecular nanostructures on surfaces, Chem Soc Rev, 37, 490, 10.1039/B703825A
Gooding, 2003, Self-assembled monolayers into the 21st century: recent advances and applications, Electroanalysis, 15, 81, 10.1002/elan.200390017
Martin, 2003, The emerging field of nanotube biotechnology, Nat Rev Drug Discov, 2, 29, 10.1038/nrd988
Schmid, 2002, Materials in nanoporous alumina, J Mater Chem, 12, 1231, 10.1039/b110753b
Ghicov, 2009, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO structures, Chem Commun, 2791, 10.1039/b822726h
Grimes, 2007, Synthesis and application of highly ordered arrays of TiO2 nanotubes, J Mater Chem, 17, 1451, 10.1039/b701168g
Anglin, 2008, Porous silicon in drug delivery devices and materials, Adv Drug Deliv Rev, 60, 1266, 10.1016/j.addr.2008.03.017
Stupp, 1997, Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science, 277, 1242, 10.1126/science.277.5330.1242
Wehrspohn RB. Ordered porous nanostructures and applications. In: Lockwood DJ, editor. Nanostructure science and technology, vol. 1. 2005, Springer.
Ren, 2012, Ordered mesoporous metal oxides: synthesis and applications, Chem Soc Rev, 41, 4909, 10.1039/c2cs35086f
Li, 1998, Hexagonal pore arrays with a 50–420nm interpore distance formed by self-organization in anodic alumina, J Appl Phys, 84, 6023, 10.1063/1.368911
Nielsch, 2002, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano Lett, 2, 677, 10.1021/nl025537k
Furneaux, 1989, The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature, 337, 147, 10.1038/337147a0
Woo L, Jae-Cheon K. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 2010;21(48):485304.
Yi L, et al. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem Commun 2009;46(2):309–11.
Fan, 2007, Nano-porous anodic aluminium oxide membranes with 6–19nm pore diameters formed by a low-potential anodizing process, Nanotechnology, 18, 345302, 10.1088/0957-4484/18/34/345302
Lee, 2008, Self-ordered, controlled structure nanoporous membranes using constant current anodization, Nano Lett, 8, 4624, 10.1021/nl803271c
Lee, 2010, spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions, Adv Funct Mater, 20, 21, 10.1002/adfm.200901213
Friedman, 2007, Roles of pH and acid type in the anodic growth of porous alumina, J Chem Phys, 127, 154717, 10.1063/1.2790429
Chu, 2006, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, J Electrochem Soc, 153, B384, 10.1149/1.2218822
Ono, 2005, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim Acta, 51, 827, 10.1016/j.electacta.2005.05.058
Sulka, 2009, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochim Acta, 54, 3683, 10.1016/j.electacta.2009.01.046
Li, 2000, Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina, Electrochem Solid-State Lett, 3, 131, 10.1149/1.1390979
Masuda, 1995, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466, 10.1126/science.268.5216.1466
Masuda, 2001, Square and triangular nanohole array architectures in anodic alumina, Adv Mater, 13, 189, 10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
Choi, 2005, Mechanism of guided self-organization producing quasi-monodomain porous alumina, Electrochim Acta, 50, 2591, 10.1016/j.electacta.2004.11.004
Masuda, 1997, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J Electrochem Soc, 144, L127, 10.1149/1.1837634
Vrublevsky, 2005, Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique, Appl Surf Sci, 242, 333, 10.1016/j.apsusc.2004.08.034
Schneider, 2005, Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology, Eur J Inorg Chem, 2005, 2352, 10.1002/ejic.200401046
Thompson, 1981, Porous anodic film formation on aluminium, Nature, 290, 230, 10.1038/290230a0
Diggle, 2002, Anodic oxide films on aluminum, Chem Rev, 69, 365, 10.1021/cr60259a005
Lee, 2006, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat Mater, 5, 741, 10.1038/nmat1717
Lee, 2008, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nat Nano, 3, 234, 10.1038/nnano.2008.54
Ono, 2004, Controlling factor of self-ordering of anodic porous alumina, J Electrochem Soc, 151, B473, 10.1149/1.1767838
Singh, 2006, Formation of self-organized nanoscale porous structures in anodic aluminum oxide, Phys Rev B, 73, 205422, 10.1103/PhysRevB.73.205422
Jessensky, 1998, Self-organized formation of hexagonal pore structures in anodic alumina, J Electrochem Soc, 145, 3735, 10.1149/1.1838867
Losic, 2009, Self-ordered nanopore and nanotube platforms for drug delivery applications, Expert Opin Drug Deliv, 6, 1363, 10.1517/17425240903300857
Parkhutik, 1992, Theoretical modelling of porous oxide growth on aluminium, J Phys D: Appl Phys, 25, 1258, 10.1088/0022-3727/25/8/017
Houser, 2009, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films, Nat Mater, 8, 415, 10.1038/nmat2423
Macak, 2005, Smooth anodic TiO2 nanotubes, Angew Chem Int Ed, 44, 7463, 10.1002/anie.200502781
Hahn, 2007, Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes, Electrochem Commun, 9, 947, 10.1016/j.elecom.2006.11.037
Lee, 2006, Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography, Small, 2, 978, 10.1002/smll.200600100
Lu, 2006, Microbead patterning on porous films with ordered arrays of pores, Adv Mater, 18, 3094, 10.1002/adma.200600744
Krishnan, 2007, Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spacing and diameter, Adv Mater, 19, 988, 10.1002/adma.200601555
Chen, 2010, Novel patterns by focused ion beam guided anodization, Langmuir, 27, 800, 10.1021/la1038393
Sun, 2002, Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films, Appl Phys Lett, 81, 3458, 10.1063/1.1517719
Maria-Chong, 2007, Soft imprinting: creating highly ordered porous anodic alumina templates on substrates for nanofabrication, Adv Funct Mater, 17, 1629, 10.1002/adfm.200600993
Stasi, 2007, Aluminium pre-patterning for highly ordered nanoporous anodized alumina, Photon Nanostruct – Fund Appl, 5, 136, 10.1016/j.photonics.2007.07.009
Kustandi, 2010, Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography, ACS Nano, 4, 2561, 10.1021/nn1001744
Jee, 2005, Fabrication of microstructures by wet etching of anodic aluminum oxide substrates, Chem Mater, 17, 4049, 10.1021/cm0486565
Pereira, 2008, Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays, Small, 4, 572, 10.1002/smll.200700256
Li, 1999, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina, Adv Mater, 11, 483, 10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
Barela, 2005, Fabrication of patterned arrays with alternating regions of aluminum and porous aluminum oxide, Electrochem Solid-State Lett, 8, C4, 10.1149/1.1828353
Gowtham, 2008, Controlled fabrication of patterned lateral porous alumina membranes, Nanotechnology, 19, 035303, 10.1088/0957-4484/19/03/035303
Grasso, 2006, Nanostructuring of a porous alumina matrix for a biomolecular microarray, Nanotechnology, 17, 795, 10.1088/0957-4484/17/3/030
Huang, 2006, Observation of isolated nanopores formed by patterned anodic oxidation of aluminum thin films, Appl Phys Lett, 88, 233112, 10.1063/1.2212535
Harada, 2010, Anodic porous alumina masks with checkerboard pattern, Appl Phys Exp, 3, 015001, 10.1143/APEX.3.015001
Lei, 2007, Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks, Prog Mater Sci, 52, 465, 10.1016/j.pmatsci.2006.07.002
Li, 1999, Nanoelectronics: growing y-junction carbon nanotubes, Nature, 402, 253, 10.1038/46214
Meng, 2005, Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proc Natl Acad Sci USA, 102, 7074, 10.1073/pnas.0502098102
Audrey Yoke Yee, 2008, Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina, Adv Funct Mater, 18, 2057, 10.1002/adfm.200800061
Cheng, 2007, Tree-like alumina nanopores generated in a non-steady-state anodization, J Mater Chem, 17, 3493, 10.1039/b709618f
Zakeri, 2007, Synthesis and characterization of nonlinear nanopores in alumina films, Chem Mater, 19, 1954, 10.1021/cm062595o
Papadopoulos, 2000, Electronic transport in y-junction carbon nanotubes, Phys Rev Lett, 85, 3476, 10.1103/PhysRevLett.85.3476
Lee, 2008, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum, Nano Lett, 8, 2155, 10.1021/nl080280x
Losic, 2009, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization, Small, 5, 1392, 10.1002/smll.200801645
Biao, 2007, Preparation of photonic crystals made of air pores in anodic alumina, Nanotechnology, 18, 365601, 10.1088/0957-4484/18/36/365601
Yamauchi, 2008, Evolution of standing mesochannels on porous anodic alumina substrates with designed conical holes, J Am Chem Soc, 130, 10165, 10.1021/ja7107036
Losic, 2009, Preparation of porous anodic alumina with periodically perforated pores, Langmuir, 25, 5426, 10.1021/la804281v
Biswas, 2009, Self-supporting nanowire arrays templated in sacrificial branched porous anodic alumina for thermoelectric devices, Appl Phys Lett, 95, 073103, 10.1063/1.3207756
Yi, 2009, Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chem Commun, 309
Routkevitch, 1996, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, J Phys Chem, 100, 14037, 10.1021/jp952910m
Lin, 2001, Microporous and dense inorganic membranes: current status and prospective, Separat Purif Technol, 25, 39, 10.1016/S1383-5866(01)00089-2
Ulman, 1996, Formation and structure of self-assembled monolayers, Chem Rev, 96, 1533, 10.1021/cr9502357
Martin, 1994, Nanomaterials: a membrane-based synthetic approach, Science, 266, 1961, 10.1126/science.266.5193.1961
Szczepanski, 2006, Stability of silane modifiers on alumina nanoporous membranes, J Membr Sci, 281, 587, 10.1016/j.memsci.2006.04.027
Schift, 2005, Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology, 16, S171, 10.1088/0957-4484/16/5/007
Velleman, 2009, Structural and chemical modification of porous alumina membranes, Micropor Mesopor Mater, 126, 87, 10.1016/j.micromeso.2009.05.024
Hendren, 2009, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J Membr Sci, 331, 1, 10.1016/j.memsci.2008.11.038
Odom, 2005, Solvent-extraction and langmuir-adsorption-based transport in chemically functionalized nanopore membranes, J Phys Chem B, 109, 20887, 10.1021/jp0524983
Ku, 2006, Evidence of ion transport through surface conduction in alkylsilane-functionalized nanoporous ceramic membranes, Langmuir, 22, 8277, 10.1021/la0615591
Popat, 2004, Surface modification of nanoporous alumina surfaces with poly(ethylene glycol), Langmuir, 20, 8035, 10.1021/la049075x
La Flamme, 2007, Biocompatibility of nanoporous alumina membranes for immunoisolation, Biomaterials, 28, 2638, 10.1016/j.biomaterials.2007.02.010
Lee, 2005, Transport and functional behaviour of poly(ethylene glycol)-modified nanoporous alumina membranes, Nanotechnology, 16, 1335, 10.1088/0957-4484/16/8/059
Steinle, 2002, Ion channel mimetic micropore and nanotube membrane sensors, Anal Chem, 74, 2416, 10.1021/ac020024j
Smuleac, 2005, Polythiol-functionalized alumina membranes for mercury capture, J Membr Sci, 251, 169, 10.1016/j.memsci.2004.11.012
Vlassiouk, 2005, Sensing DNA hybridization via ionic conductance through a nanoporous electrode, Langmuir, 21, 4776, 10.1021/la0471644
Vlassiouk, 2004, “Direct” detection and separation of DNA using nanoporous alumina filters, Langmuir, 20, 9913, 10.1021/la047959a
Wang, 2009, Label-free DNA sensor based on surface charge modulated ionic conductance, ACS Nano, 3, 1004, 10.1021/nn900113x
Takmakov, 2006, Application of anodized aluminum in fluorescence detection of biological species, Anal Bioanal Chem, 385, 954, 10.1007/s00216-006-0504-4
Yang, 2007, Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes, Biosens Bioelectron, 22, 3283, 10.1016/j.bios.2007.03.006
Hobler, 2010, A functional immobilization of semiconductor nanoparticles (quantum dots) on nanoporous aluminium oxide, Phys Status Solidi (a), 207, 872, 10.1002/pssa.200983313
Tanvir, 2009, Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications, J Membr Sci, 329, 85, 10.1016/j.memsci.2008.12.015
Leary Swan, 2005, Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion, Biomaterials, 26, 1969, 10.1016/j.biomaterials.2004.07.001
Demirel, 2011, Surface-induced self-assembly of dipeptides onto nanotextured surfaces, Langmuir, 27, 12533, 10.1021/la202750n
Abdul MMJ, et al. Pore spanning lipid bilayers on silanised nanoporous alumina membranes. SPIE, 2008.
Demé, 2005, Polymer-cushioned lipid bilayers in porous alumina, Eur Biophys J, 34, 170, 10.1007/s00249-004-0440-1
Largueze, 2010, Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina, Colloids Surf B – Biointerfaces, 79, 33, 10.1016/j.colsurfb.2010.03.011
Lazzara, 2012, Phospholipids as an alternative to direct covalent coupling: surface functionalization of nanoporous alumina for protein recognition and purification, J Colloid Interface Sci, 366, 57, 10.1016/j.jcis.2011.09.067
Li, 2009, Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method, J Membr Sci, 337, 310, 10.1016/j.memsci.2009.04.010
Sun, 2006, High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates, Chem Mater, 18, 4033, 10.1021/cm060554m
Jain, 2007, High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes, Biomacromolecules, 8, 3102, 10.1021/bm700515m
Wang, 2006, Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition, Mater Res Bull, 41, 1417, 10.1016/j.materresbull.2006.02.011
Sehayek, 2005, Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles, Chem Mater, 17, 3743, 10.1021/cm0501057
Lahav, 2003, Nanoparticle nanotubes, Angew Chem, 115, 5734, 10.1002/ange.200352216
Grimm, 2008, Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays, Nano Lett, 8, 1954, 10.1021/nl080842c
Jani, 2009, Nanoporous anodic aluminium oxide membranes with layered surface chemistry, Chem Commun, 3062, 10.1039/b901745c
Jani, 2010, Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes, Angew Chem Int Ed, 49, 7933, 10.1002/anie.201002504
Allara, 1985, Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface, Langmuir, 1, 45, 10.1021/la00061a007
Allara, 1985, Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface, Langmuir, 1, 52, 10.1021/la00061a008
Chang, 2006, Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption, J Membr Sci, 275, 70, 10.1016/j.memsci.2005.09.005
Cheow, 2007, Grafting of nanoporous alumina membranes and films with organic acids, Surface Interface Anal, 39, 601, 10.1002/sia.2573
Karaman, 2001, The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates, Colloids Surfaces A: Physicochem Eng Aspects, 182, 285, 10.1016/S0927-7757(00)00821-9
Öberg, 2001, Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface, Thin Solid Films, 397, 102, 10.1016/S0040-6090(01)01422-5
ter Maat, 2011, Organic modification and subsequent biofunctionalization of porous anodic alumina using terminal alkynes, Langmuir, 27, 13606, 10.1021/la203738h
Janshoff, 2006, Transport across artificial membranes—an analytical perspective, Anal Bioanal Chem, 385, 433, 10.1007/s00216-006-0305-9
Schmitt, 2008, Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading, Soft Matter, 4, 250, 10.1039/B716723G
Chekmenev, 2006, Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy, Biophys J, 91, 3076, 10.1529/biophysj.106.085191
Proux-Delrouyre, 2002, Formation of tethered and streptavidin-supported lipid bilayers on a microporous electrode for the reconstitution of membranes of large surface area, Langmuir, 18, 3263, 10.1021/la011585t
Hennesthal, 2000, Pore-spanning lipid bilayers visualized by scanning force microscopy, J Am Chem Soc, 122, 8085, 10.1021/ja000940j
Hennesthal, 2002, Membrane-suspended nanocompartments based on ordered pores in alumina, ChemPhysChem, 3, 885, 10.1002/1439-7641(20021018)3:10<885::AID-CPHC885>3.0.CO;2-9
Drexler, 2003, Pore-suspending lipid bilayers on porous alumina investigated by electrical impedance spectroscopy, J Phys Chem B, 107, 11245, 10.1021/jp030762r
Schmitt, 2009, Impedance analysis of gramicidin D in pore-suspending membranes, Soft Matter, 5, 3347, 10.1039/b901683j
Smirnov, 2003, Substrate-supported lipid nanotube arrays, J Am Chem Soc, 125, 8434, 10.1021/ja0349406
Guo, 2006, Dimension control of glycolipid nanotubes by successive use of vesicle extrusion and porous template, Chem Mater, 18, 1577, 10.1021/cm051980v
Li, 2008, Polarization-dependent fluorescence of proteins bound to nanopore-confined lipid bilayers, J Chem Phys, 129, 095102, 10.1063/1.2972143
Peyratout, 2004, Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers, Angew Chem Int Ed, 43, 3762, 10.1002/anie.200300568
Balachandra, 2002, Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+, Macromolecules, 35, 3171, 10.1021/ma0116349
Liu, 2003, Size-selective transport of uncharged solutes through multilayer polyelectrolyte membranes, Chem Mater, 16, 351, 10.1021/cm034559k
Hong, 2006, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, J Membr Sci, 280, 1, 10.1016/j.memsci.2006.04.028
Hong, 2007, Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23, 1716, 10.1021/la061701y
Hong, 2009, Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes, J Membr Sci, 327, 2, 10.1016/j.memsci.2008.11.035
Ouyang, 2008, Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations, J Membr Sci, 310, 76, 10.1016/j.memsci.2007.10.031
Dai, 2005, Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption, Anal Chem, 78, 135, 10.1021/ac0513966
Dotzauer, 2006, Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports, Nano Lett, 6, 2268, 10.1021/nl061700q
He, 2009, Self-assembly of composite nanotubes and their applications, Current Opin Colloid Interface Sci, 14, 115, 10.1016/j.cocis.2008.09.005
Qi, 2003, Optical emission of conjugated polymers adsorbed to nanoporous alumina, Nano Lett, 3, 1265, 10.1021/nl034070q
Jain, 2009, Applications of polymer brushes in protein analysis and purification, Annu Rev Anal Chem, 2, 387, 10.1146/annurev-anchem-060908-155153
Barbey, 2009, Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem Rev, 109, 5437, 10.1021/cr900045a
Nagale, 2000, Ultrathin, hyperbranched poly(acrylic acid) membranes on porous alumina supports, J Am Chem Soc, 122, 11670, 10.1021/ja002203t
Balachandra, 2003, Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support, J Membr Sci, 227, 1, 10.1016/j.memsci.2003.07.009
Sun, 2005, Polymer brush membranes for pervaporation of organic solvents from water, Macromolecules, 38, 2307, 10.1021/ma047510o
Grajales, 2010, Effects of monomer composition on CO2—selective polymer brush membranes, Chem Mater., 22, 4026, 10.1021/cm100740n
Lee, 2009, Polymer brushes make nanopore filter membranes size selective to dissolved polymers, Macromolecules, 43, 565, 10.1021/ma9019569
Bruening, 2008, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes, Langmuir, 24, 7663, 10.1021/la800179z
Stuart, 2010, Emerging applications of stimuli-responsive polymer materials, Nat Mater, 9, 101, 10.1038/nmat2614
Cui, 2006, Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control, Langmuir, 22, 8205, 10.1021/la0605079
Cui, 2005, Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane, Macromol Rapid Commun, 26, 1552, 10.1002/marc.200500373
Fu, 2004, Reversible control of free energy and topography of nanostructured surfaces, J Am Chem Soc, 126, 8904, 10.1021/ja047895q
Wang, 2006, Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations, J Am Chem Soc, 128, 15954, 10.1021/ja065116v
Gorman, 2008, Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization, Macromolecules, 41, 4856, 10.1021/ma8004857
Lau, 2009, In situ characterization of n-carboxy anhydride polymerization in nanoporous anodic alumina, J Phys Chem B, 113, 3179, 10.1021/jp809593d
Shi, 2008, Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation, J Membr Sci, 325, 801, 10.1016/j.memsci.2008.09.003
Song, 2011, pH-sensitive characteristics of poly(acrylic acid)-functionalized anodic aluminum oxide (AAO) membranes, J Membr Sci, 372, 340, 10.1016/j.memsci.2011.02.017
Oliveira, 2008, Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites, React Funct Polym, 68, 27, 10.1016/j.reactfunctpolym.2007.10.009
Jeon, 2011, Electrically actuatable smart nanoporous membrane for pulsatile drug release, Nano Lett, 11, 1284, 10.1021/nl104329y
Hench, 1990, The sol–gel process, Chem Rev, 90, 33, 10.1021/cr00099a003
Kickelbick, 2005, Formation of hexagonal mesoporous silica in submicrometer channels, Small, 1, 168, 10.1002/smll.200400098
Lakshmi, 1997, Sol–gel template synthesis of semiconductor oxide micro- and nanostructures, Chem Mater, 9, 2544, 10.1021/cm970268y
Hunks, 2005, Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs), J Mater Chem, 15, 3716, 10.1039/b504511h
Yamaguchi, 2004, Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane, Nat Mater, 3, 337, 10.1038/nmat1107
Wang, 2009, Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres, J Mater Chem, 19, 1331, 10.1039/b817156d
Ma, 2009, Hierarchically structured anatase nanotubes and membranes, Micropor Mesopor Mater, 124, 162, 10.1016/j.micromeso.2009.05.007
Rørvik, 2009, Template-assisted synthesis of PbTiO3 nanotubes, J Eur Ceram Soc, 29, 2575, 10.1016/j.jeurceramsoc.2009.02.004
Xin, 2007, Formation of titania/silica hybrid nanowires containing linear mesocage arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition, Angew Chem Int Ed, 46, 6829, 10.1002/anie.200700923
Li, 2005, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries, J Phys Chem B, 109, 14017, 10.1021/jp051900a
Wang, 2009, One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties, Nanotechnology, 20, 345704, 10.1088/0957-4484/20/34/345704
Park, 2009, Silicon nanotube battery anodes, Nano Lett, 9, 3844, 10.1021/nl902058c
Shi, 2008, NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties, Chem Phys Lett, 454, 75, 10.1016/j.cplett.2008.01.069
Mikhail, 2009, Polymer-derived SiOC nanotubes and nanorods via a template approach, Eur J Inorg Chem, 2009, 3496, 10.1002/ejic.200801239
Lee, 2002, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296, 2198, 10.1126/science.1071396
Platschek, 2008, Vertical columnar block-copolymer-templated mesoporous silica via confined phase transformation, J Am Chem Soc, 130, 17362, 10.1021/ja803102y
Platschek, 2006, Tuning the structure and orientation of hexagonally ordered mesoporous channels in anodic alumina membrane hosts: a 2D small-angle x-ray scattering study, Angew Chem, 118, 1152, 10.1002/ange.200503301
Wu, 2004, Composite mesostructures by nano-confinement, Nat Mater, 3, 816, 10.1038/nmat1230
Lu, 2004, Ordered SBA-15 nanorod arrays inside a porous alumina membrane, J Am Chem Soc, 126, 8650, 10.1021/ja0488378
Zhang, 2012, Synthesis of silica nanotubes with orientation controlled mesopores in porous membranes via interfacial growth, Chem Mater, 24, 1005, 10.1021/cm300242n
Cazacu, 2009, Dynamic hybrid materials for constitutional self-instructed membranes, Proc Natl Acad Sci, 106, 8117, 10.1073/pnas.0813257106
Shi, 2010, Lysine-attached anodic aluminum oxide (AAO)-silica affinity membrane for bilirubin removal, J Membr Sci, 349, 333, 10.1016/j.memsci.2009.11.066
Saumitra, 2007, SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping, Nanotechnology, 18, 275705, 10.1088/0957-4484/18/27/275705
Berrigan, 2011, Protein-enabled layer-by-layer syntheses of aligned, porous-wall, high-aspect-ratio TiO2 nanotube arrays, Adv Funct Mater, 21, 1693, 10.1002/adfm.201002676
Wang, 2007, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries, Adv Mater, 19, 3016, 10.1002/adma.200602189
Bae, 2008, Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications, Chem Mater, 20, 756, 10.1021/cm702138c
Hurst, 2006, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods, Angew Chem Int Ed, 45, 2672, 10.1002/anie.200504025
Hong Jin, 2006, Semiconductor nanowires: from self-organization to patterned growth, Small, 2, 700, 10.1002/smll.200500495
Thompson, 1978, Nucleation and growth of porous anodic films on aluminium, Nature, 272, 433, 10.1038/272433a0
Liu, 2008, Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane, Nanotechnology, 19, 335604, 10.1088/0957-4484/19/33/335604
Lee, 2009, Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis, Sensor Actuat B: Chem, 136, 320, 10.1016/j.snb.2008.12.054
Qin, 2008, General assembly method for linear metal nanoparticle chains embedded in nanotubes, Nano Lett, 8, 3221, 10.1021/nl801548h
Woo, 2005, A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes, Angew Chem Int Ed, 44, 6050, 10.1002/anie.200501341
Burdick, 2009, High-throughput templated multisegment synthesis of gold nanowires and nanorods, Nanotechnology, 20, 065306, 10.1088/0957-4484/20/6/065306
Hoang, 2009, Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications, Nanotechnology, 20, 125607, 10.1088/0957-4484/20/12/125607
Kondo, 2009, Surface enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina, Appl Phys Exp, 2, 0320001
Hassan, 1984, A review of electroless gold deposition processes, Gold Bull, 17
Niesen, 2002, Review: deposition of ceramic thin films at low temperatures from aqueous solutions, Solid State Ionics, 151, 61, 10.1016/S0167-2738(02)00604-5
Wirtz, 2002, Template synthesized gold nanotube membranes for chemical separations and sensing, Analyst, 127, 871, 10.1039/b201939f
Cheng, 2010, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering, Nanotechnology, 21, 015604, 10.1088/0957-4484/21/1/015604
Yu, 2012, Gold nanotube membranes have catalytic properties, Micropor Mesopor Mater, 153, 131, 10.1016/j.micromeso.2011.12.011
Velleman, 2012, The effects of surface functionality positioning on the transport properties of membranes, J Membr Sci, 411–412, 211, 10.1016/j.memsci.2012.04.033
Zhou, 2008, Ternary alloy Ni–W–P nanoparticles electroless deposited within alumina nanopores, Mater Sci Technol, 24, 1250, 10.1179/174328407X168829
Zhang, 2004, Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates, Chem Commun, 1106, 10.1039/b315931k
Wang, 2007, Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition, Mater Lett, 61, 3795, 10.1016/j.matlet.2006.12.035
Piao, 2005, Nanostructured materials prepared by use of ordered porous alumina membranes, Electrochim Acta., 50, 2997, 10.1016/j.electacta.2004.12.043
Hou, 2004, Layer-by-layer nanotube template synthesis, J Am Chem Soc, 126, 5674, 10.1021/ja049537t
Nguyen, 2008, Development of a biomimetic nanoporous membrane for the selective transport of charged proteins, Bioinspirat Biomim, 3, 035008, 10.1088/1748-3182/3/3/035008
Cheow, 2008, Transport and separation of proteins across platinum-coated nanoporous alumina membranes, Electrochim Acta, 53, 4669, 10.1016/j.electacta.2008.01.070
Teng, 2009, Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes, Small, 5, 2333, 10.1002/smll.200900577
Zhang, 2008, Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering, Spectrochim Acta Part A: Mol Biomol Spectrosc, 69, 91, 10.1016/j.saa.2007.03.035
Pereira, 2007, Functionally modified macroporous membrane prepared by using pulsed laser deposition, Adv Funct Mater, 17, 443, 10.1002/adfm.200600866
Wang, 2007, Large-area uniform nanodot arrays embedded in porous anodic alumina, Nanotechnology, 18, 015303, 10.1088/0957-4484/18/1/015303
Siow, 2006, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review, Plasma Process Polym, 3, 392, 10.1002/ppap.200600021
Brevnov, 2004, Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of C4F8 on anodic aluminum oxide, J Electrochem Soc, 151, B484, 10.1149/1.1770917
Losic, 2008, Surface modification of nanoporous alumina membranes by plasma polymerization, Nanotechnology, 19, 245704, 10.1088/0957-4484/19/24/245704
Knez, 2007, Synthesis and surface engineering of complex nanostructures by atomic layer deposition, Adv Mater, 19, 3425, 10.1002/adma.200700079
Ott, 1996, Atomic layer controlled deposition of Al2O3 films using binary reaction sequence chemistry, Appl Surf Sci, 107, 128, 10.1016/S0169-4332(96)00503-X
Berland, 1998, In situ monitoring of atomic layer controlled pore reduction in alumina tubular membranes using sequential surface reactions, Chem Mater, 10, 3941, 10.1021/cm980384g
Elam, 2003, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem Mater, 15, 3507, 10.1021/cm0303080
Xiong, 2005, Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes, J Phys Chem B, 109, 14059, 10.1021/jp0503415
Banerjee, 2009, Nanotubular metal–insulator–metal capacitor arrays for energy storage, Nat Nano, 4, 292, 10.1038/nnano.2009.37
Pitzschel, 2009, Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes, ACS Nano, 3, 3463, 10.1021/nn900909q
Liu, 2003, Electrical properties of zinc oxide nanowires and intramolecular p–n junctions, Appl Phys Lett, 83, 3168, 10.1063/1.1609232
Soroka, 2009, Template-based multiwalled TiO2/iron oxides nanotubes: structure and magnetic properties, J Appl Phys, 106, 084313, 10.1063/1.3245395
Marianna, 2009, Ta2O5- and TiO2-based nanostructures made by atomic layer deposition, Nanotechnology, 21, 035301
Bachmann, 2007, Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition, J Am Chem Soc, 129, 9554, 10.1021/ja072465w
Martinson, 2007, ZnO nanotube based dye-sensitized solar cells, Nano Lett, 7, 2183, 10.1021/nl070160+
Martinson, 2008, Radial electron collection in dye-sensitized solar cells, Nano Lett, 8, 2862, 10.1021/nl8015285
Marianna, 2010, Ta2O5- and TiO2-based nanostructures made by atomic layer deposition, Nanotechnology, 21, 035301, 10.1088/0957-4484/21/3/035301
George, 2009, Atomic layer deposition: an overview, Chem Rev, 110, 111, 10.1021/cr900056b
Marichy, 2012, Atomic layer deposition of nanostructured materials for energy and environmental applications, Adv Mater, 24, 1017, 10.1002/adma.201104129
Choy, 2003, Chemical vapour deposition of coatings, Prog Mater Sci, 48, 57, 10.1016/S0079-6425(01)00009-3
Miranda, 2009, Direct coupling of a carbon nanotube membrane to a mass spectrometer: contrasting nanotube and capillary tube introduction systems, J Membr Sci, 344, 26, 10.1016/j.memsci.2009.07.037
Popp, 2009, Porous carbon nanotube-reinforced metals and ceramics via a double templating approach, Carbon, 47, 3208, 10.1016/j.carbon.2009.07.034
Park, 2009, Carbon nanosyringe array as a platform for intracellular delivery, Nano Lett, 9, 1325, 10.1021/nl802962t
Che, 1998, Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method, Chem Mater, 10, 260, 10.1021/cm970412f
Fan, 2008, Sensitive optical biosensors for unlabeled targets: a review, Anal Chim Acta, 620, 8, 10.1016/j.aca.2008.05.022
Altalhi, 2010, Synthesis of carbon nanotube (CNT) composite membranes, Membranes, 1, 37, 10.3390/membranes1010037
Ansari, 2008, Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD, Biosens Bioelectron, 23, 1838, 10.1016/j.bios.2008.02.022
Khodin, 2009, Nanomorph silicon grown on template alumina substrate by plasma-enhanced CVD, Mater Lett, 63, 2552, 10.1016/j.matlet.2009.09.002
Lai, 2008, Templated electrosynthesis of nanomaterials and porous structures, J Colloid Interface Sci, 323, 203, 10.1016/j.jcis.2008.04.054
Kuchibhatla, 2007, One dimensional nanostructured materials, Prog Mater Sci, 52, 699, 10.1016/j.pmatsci.2006.08.001
Barth, 2010, Synthesis and applications of one-dimensional semiconductors, Prog Mater Sci, 55, 563, 10.1016/j.pmatsci.2010.02.001
Woo, 2010, Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization, Nanotechnology, 21, 485304, 10.1088/0957-4484/21/48/485304
Li, 2008, Nanotube arrays in porous alumina membranes, J Mater Sci Technol, 24, 550
Kolmakov, 2004, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu Rev Mater Res, 34, 151, 10.1146/annurev.matsci.34.040203.112141
Taberna, 2006, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat Mater, 5, 567, 10.1038/nmat1672
Liu, 2009, Synthesis of iron–palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution, J Electroanal Chem, 633, 15, 10.1016/j.jelechem.2009.04.022
Yuan, 2004, Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays, Nanotechnology, 15, 59, 10.1088/0957-4484/15/1/011
Haberkorn, 2009, Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells, ACS Nano, 3, 1415, 10.1021/nn900207a
Hong Jin, 2005, Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach, Nanotechnology, 16, 913, 10.1088/0957-4484/16/6/048
Chen, 2007, Instabilities in nanoporous media, Nano Lett, 7, 183, 10.1021/nl0621241
Lee, 2003, Synthesis of unidirectional alumina nanostructures without added organic solvents, J Am Chem Soc, 125, 2882, 10.1021/ja029494l
Rabin, 2003, Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass, Adv Funct Mater, 13, 631, 10.1002/adfm.200304394
Yuan, 2002, Regular alumina nanopillar arrays, Adv Mater, 14, 303, 10.1002/1521-4095(20020219)14:4<303::AID-ADMA303>3.0.CO;2-D
Chen, 2012, P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates, ACS Nano, 6, 1479, 10.1021/nn2043548
Choi, 2011, Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates, Langmuir, 27, 2132, 10.1021/la104839a
Lin, 2001, Individual alumina nanotubes, Angew Chem Int Ed, 40, 1490, 10.1002/1521-3773(20010417)40:8<1490::AID-ANIE1490>3.0.CO;2-K
Liu, 2011, Direct formation of thin-walled palladium nanotubes in nanochannels under an electrical potential, Chem Mater, 23, 1456, 10.1021/cm103013z
Xiao, 2002, Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes, Nano Lett, 2, 1293, 10.1021/nl025758q
Steinhart, 2004, Nanotubes by template wetting: a modular assembly system, Angew Chem Int Ed, 43, 1334, 10.1002/anie.200300614
Xia, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv Mater, 15, 353, 10.1002/adma.200390087
Cheng, 2007, Template-directed materials for rechargeable lithium-ion batteries, Chem Mater, 20, 667, 10.1021/cm702091q
Wang, 2007, Template synthesis of nanostructured materials via layer-by-layer assembly, Chem Mater, 20, 848, 10.1021/cm7024813
Joshi, 2012, Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality, Chem Soc Rev, 41, 5285, 10.1039/c2cs35089k
Kim, 2008, Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures, Anal Biochem, 379, 1, 10.1016/j.ab.2008.04.029
Alvarez, 2009, A label-free porous alumina interferometric immunosensor, ACS Nano, 3, 3301, 10.1021/nn900825q
Pan, 2003, Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates, Nano Lett, 3, 811, 10.1021/nl034055l
Dronov, 2011, Nanoporous alumina-based interferometric transducers ennobled, Nanoscale, 10.1039/c0nr00897d
Feng, 2007, Graded-bandgap quantum- dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization, Adv Mater, 19, 1933, 10.1002/adma.200602311
Chang, 2009, Nanoporous membranes with mixed nanoclusters for raman-based label-free monitoring of peroxide compounds, Anal Chem, 81, 5740, 10.1021/ac900537d
Wang, 2011, FITC-modified PPy nanotubes embedded in nanoporous AAO membrane can detect trace PCB20 via fluorescence ratiometric measurement, Chem Commun, 47, 3808, 10.1039/c0cc05371f
Wang, 2011, Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane, Analyst, 136, 278, 10.1039/C0AN00510J
Jia, 2004, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array, Solid State Commun, 130, 367, 10.1016/j.ssc.2004.02.033
Run-Ping, 2003, Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays, J Phys: Condens Matter, 15, 8271, 10.1088/0953-8984/15/49/006
Kumeria, 2012, Controlling interferometric properties of nanoporous anodic aluminium oxide, Nanoscale Res Lett, 7, 1, 10.1186/1556-276X-7-88
Kumeria, 2011, Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO), Phys Status Solidi (RRL) – Rapid Res Lett, 5, 406, 10.1002/pssr.201105425
Kumeria, 2012, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells, Biosens Bioelectron, 35, 167, 10.1016/j.bios.2012.02.038
Kim, 2007, Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry, Anal Chem, 79, 1855, 10.1021/ac061909o
Lazzara, 2011, Benefits and limitations of porous substrates as biosensors for protein adsorption, Anal Chem, 83, 5624, 10.1021/ac200725y
Ko, 2008, Porous substrates for label-free molecular level detection of nonresonant organic molecules, ACS Nano, 3, 181, 10.1021/nn800569f
Ko, 2008, Nanostructured surfaces and assemblies as SERS media, Small, 4, 1576, 10.1002/smll.200800337
Ji, 2009, Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced raman scattering and thin film interference, Langmuir, 25, 11869, 10.1021/la901521j
Wada, 2007, Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules:  possible mechanistic implications of metal surface melting, Anal Chem, 79, 9122, 10.1021/ac071414e
Grieshaber, 2008, Electrochemical biosensors – sensor principles and architectures, Sensors, 8, 1400, 10.3390/s8031400
Stura, 2007, Anodic porous alumina as mechanical stability enhancer for LDL-cholesterol sensitive electrodes, Biosens Bioelectron, 23, 655, 10.1016/j.bios.2007.07.011
Shimomura, 2009, Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane, Talanta, 78, 217, 10.1016/j.talanta.2008.11.008
Xian, 2007, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosens Bioelectron, 22, 2827, 10.1016/j.bios.2006.11.020
Darder, 2006, Encapsulation of enzymes in alumina membranes of controlled pore size, Thin Solid Films, 495, 321, 10.1016/j.tsf.2005.08.285
González, 2008, Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection, Sensor Actuat B: Chem, 144, 349, 10.1016/j.snb.2008.11.006
Maghsoodi, 2009, A novel biosensor using entangled carbon nanotubes layer grown on an alumina substrate by CCVD of methane on FeOx–MgO, Sensor Actuat B: Chem, 141, 526, 10.1016/j.snb.2009.06.042
Takmakov, 2006, Hydrothermally shrunk alumina nanopores and their application to DNA sensing, The Analyst, 131, 1248, 10.1039/b608084g
Wang, 2009, A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection, Talanta, 78, 647, 10.1016/j.talanta.2008.12.001
Yu, 2009, A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection, Sensors Actuat A: Phys, 154, 288, 10.1016/j.sna.2008.07.005
Koh, 2007, Development of a membrane-based electrochemical immunosensor, Electrochim Acta, 53, 803, 10.1016/j.electacta.2007.07.055
Nguyen, 2009, Membrane-based electrochemical nanobiosensor for the detection of virus, Anal Chem, 81, 7226, 10.1021/ac900761a
Zhou, 2009, Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose, Electrochem Commun, 11, 216, 10.1016/j.elecom.2008.11.010
Jagminas, 2007, Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing, Nanoscale Res Lett, 2, 130, 10.1007/s11671-007-9043-y
de la Escosura-Muñiz, 2011, A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood, Small, 7, 675, 10.1002/smll.201002349
Yang, 2008, Study on the activity and stability of urease immobilized onto nanoporous alumina membranes, Micropor Mesopor Mater, 111, 359, 10.1016/j.micromeso.2007.08.009
Fu, 2008, Artificial molecular sieves and filters: a new paradigm for biomolecule separation, Trends Biotechnol, 26, 311, 10.1016/j.tibtech.2008.02.009
Bohn, 2009, Nanoscale control and manipulation of molecular transport in chemical analysis, Annu Rev Anal Chem, 2, 279, 10.1146/annurev-anchem-060908-155130
Punit Kohli, 2004, Nanotube membrane based biosensors, Electroanalysis, 16, 9, 10.1002/elan.200302916
Martin, 2001, Controlling ion-transport selectivity in gold nanotubule membranes, Adv Mater, 13, 1351, 10.1002/1521-4095(200109)13:18<1351::AID-ADMA1351>3.0.CO;2-W
Bluhm, 1999, Surface effects on cation transport across porous alumina membranes, Langmuir, 15, 8668, 10.1021/la9902441
McCleskey, 2002, Asymmetric membranes with modified gold films as selective gates for metal ion separations, J Membr Sci, 210, 273, 10.1016/S0376-7388(02)00387-3
Le, 2002, Ultra-thin gates for the transport of phenol from supported liquid membranes to permanent surface modified membranes, J Membr Sci, 205, 213, 10.1016/S0376-7388(02)00114-X
Dai, 2002, Controlling ion transport through multilayer polyelectrolyte membranes by derivatization with photolabile functional groups, Macromolecules, 35, 3164, 10.1021/ma011633g
Yamaguchi, 2008, Diffusion of metal complexes inside of silica−surfactant nanochannels within a porous alumina membrane, J Phys Chem B, 112, 2024, 10.1021/jp0767516
Steenkamp, 2002, Copper(II) removal from polluted water with alumina/chitosan composite membranes, J Membr Sci, 197, 147, 10.1016/S0376-7388(01)00608-1
Yang, 2009, Preparation and assessment of fluorous supported liquid membranes based on porous alumina, J Membr Sci, 345, 170, 10.1016/j.memsci.2009.08.042
Yamaguchi, 2006, Extraction mechanisms of charged organic dye molecules into silica-surfactant nanochannels in a porous alumina membrane, Anal Chim Acta, 556, 157, 10.1016/j.aca.2005.06.029
Henrich, 1985, The surfaces of metal oxides, Rep Prog Phys, 48, 1481, 10.1088/0034-4885/48/11/001
Brown, 1998, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chem Rev, 99, 77, 10.1021/cr980011z
Liu, 2010, Ion-exchange membranes prepared using layer-by-layer polyelectrolyte deposition, J Membr Sci, 354, 198, 10.1016/j.memsci.2010.02.047
Dotzauer, 2009, Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds, Langmuir, 25, 1865, 10.1021/la803220z
Mitchell, 2002, Smart nanotubes for bioseparations and biocatalysis, J Am Chem Soc, 124, 11864, 10.1021/ja027247b
Son, 2005, Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery, J Am Chem Soc, 127, 7316, 10.1021/ja0517365
Song, 2011, Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal, J Hazard Mater, 187, 311, 10.1016/j.jhazmat.2011.01.026
Yamashita, 2009, Separation of adenine, adenosine-5′-monophosphate and adenosine-5′-triphosphate by fluidic chip with nanometre-order diameter columns inside porous anodic alumina using an aqueous mobile phase, Lab Chip, 9, 1337, 10.1039/b901166h
Osmanbeyoglu, 2009, Thin alumina nanoporous membranes for similar size biomolecule separation, J Membr Sci, 343, 1, 10.1016/j.memsci.2009.07.027
Lee, 2011, A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter, Lab Chip, 11, 1049, 10.1039/c0lc00499e
Chen, 2012, Entrapment of protein in nanotubes formed by a nanochannel and ion-channel hybrid structure of anodic alumina, Small, 8, 1001, 10.1002/smll.201102117
Napoli, 2010, Nanofluidic technology for biomolecule applications: a critical review, Lab Chip, 10, 957, 10.1039/b917759k
Fredlake, 2008, Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5minutes, Proc Natl Acad Sci, 105, 476, 10.1073/pnas.0705093105
Sano, 2003, Size-exclusion chromatography using self-organized nanopores in anodic porous alumina, Appl Phys Lett, 83, 4438, 10.1063/1.1629379
Chang, 2008, Preparation of inorganic–organic anion-exchange membranes and their application in plasmid DNA and RNA separation, J Membr Sci, 311, 336, 10.1016/j.memsci.2007.12.034
Moon, 2009, Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes, Biomed Microdevice, 11, 135, 10.1007/s10544-008-9217-0
Stair, 2006, Novel, uniform nanostructured catalytic membranes, Top Catal, 39, 181, 10.1007/s11244-006-0055-0
Wang, 2005, Mesoporous membrane device for asymmetric biosensing, Langmuir, 21, 1153, 10.1021/la0477340
Williams, 2008, On the mechanisms of biocompatibility, Biomaterials, 29, 2941, 10.1016/j.biomaterials.2008.04.023
Popat, 2005, Influence of nanoporous alumina membranes on long-term osteoblast response, Biomaterials, 26, 4516, 10.1016/j.biomaterials.2004.11.026
Swan, 2005, Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture, J Biomed Mater Res Part A, 72A, 288, 10.1002/jbm.a.30223
Popat, 2007, Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces, J Biomed Mater Res Part A, 80A, 955, 10.1002/jbm.a.31028
Karlsson, 2003, Initial in vitro interaction of osteoblasts with nano-porous alumina, Biomaterials, 24, 3039, 10.1016/S0142-9612(03)00146-7
Karlsson, 2004, Nanoporous aluminum oxide affects neutrophil behaviour, Microsc Res Techn, 63, 259, 10.1002/jemt.20040
Karlsson, 2006, Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina, J Mater Sci: Mater Med, 17, 1101, 10.1007/s10856-006-0537-4
Ferraz, 2008, Influence of nanoporesize on platelet adhesion and activation, J Mater Sci: Mater Med, 19, 3115, 10.1007/s10856-008-3449-7
Popat, 2004, Poly (ethylene glycol) grafted nanoporous alumina membranes, J Membr Sci, 243, 97, 10.1016/j.memsci.2004.05.030
Wolfrum, 2006, Suspended nanoporous membranes as interfaces for neuronal biohybrid systems, Nano Lett, 6, 453, 10.1021/nl052370x
Prasad, 2006, Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring, Biosens Bioelectron, 21, 1219, 10.1016/j.bios.2005.05.005
Hoess, 2007, Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes, Acta Biomater, 3, 43, 10.1016/j.actbio.2006.07.007
Ishibashi, 2007, A porous membrane-based culture substrate for localized in situ electroporation of adherent mammalian cells, Sensor Actuat B: Chem, 128, 5, 10.1016/j.snb.2007.05.027
Graham, 2009, Neuronal cell biocompatibility and adhesion to modified CMOS electrodes, Biomed Microdevice, 11, 1091, 10.1007/s10544-009-9326-4
Kant, 2010, Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum, ACS Appl Mater Interface, 2, 3447, 10.1021/am100502u
Sedel, 2000, Evolution of alumina-on-alumina implants: a review, Clin Orthopaed Relat Res, 379, 48, 10.1097/00003086-200010000-00008
Klawitter, 1977, An evaluation of porous alumina ceramic dental implants, J Dental Res, 56, 768, 10.1177/00220345770560071101
Karageorgiou, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474, 10.1016/j.biomaterials.2005.02.002
Mour, 2010, Advances in porous biomaterials for dental and orthopaedic applications, Materials, 3, 2947, 10.3390/ma3052947
Bose, 2002, Processing and characterization of porous alumina scaffolds, J Mater Sci: Mater Med, 13, 23, 10.1023/A:1013622216071
Briggs, 2004, Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating, J Mater Sci: Mater Med, 15, 1021, 10.1023/B:JMSM.0000042688.33507.12
Mainardes, 2004, Drug delivery systems: past, present, and future, Current Drug Targets, 5, 449, 10.2174/1389450043345407
Vallet-Regı´, 2007, Mesoporous materials for drug delivery, Angew Chem Int Ed, 46, 7548, 10.1002/anie.200604488
Jain, 2005, The role of nanobiotechnology in drug discovery, Drug Discov Today, 10, 1435, 10.1016/S1359-6446(05)03573-7
Simovic, 2010, Controlled drug release from porous materials by plasma polymer deposition, Chem Commun, 46, 1317, 10.1039/b919840g
Aw, 2011, Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs, J Mater Chem, 10.1039/c0jm04307a
Jeon, 2012, Functional nanoporous membranes for drug delivery, J Mater Chem, 22, 14814, 10.1039/c2jm32430j
Wieneke, 2002, Stent coating: a new approach in interventional cardiology, Herz, 27, 518, 10.1007/s00059-002-2405-4
Kang, 2007, Controlled drug release using nanoporous anodic aluminum oxide on stent, Thin Solid Films, 515, 5184, 10.1016/j.tsf.2006.10.029
Wieneke, 2003, Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits, Catheterizat Cardiovasc Intervent, 60, 399, 10.1002/ccd.10664
Tao, 2003, Microfabricated drug delivery systems: from particles to pores, Adv Drug Deliv Rev, 55, 315, 10.1016/S0169-409X(02)00227-2
Desai, 2004, Nanoporous microsystems for islet cell replacement, Adv Drug Deliv Rev, 56, 1661, 10.1016/j.addr.2003.11.006
Gong, 2003, Controlled molecular release using nanoporous alumina capsules, Biomed Microdevice, 5, 75, 10.1023/A:1024471618380
La Flamme, 2007, The effects of cell density and device arrangement on the behavior of macroencapsulated-cells, Cell Transplant, 16, 765, 10.3727/000000007783465262
Flamme, 2005, Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility, Diabetes Technol Therapeut, 7, 684, 10.1089/dia.2005.7.684
Liu, 2010, Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors, Phys Chem Chem Phys, 12, 4309, 10.1039/b918589p
Nakayama, 2008, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl Phys Lett, 93, 121903, 10.1063/1.2988288
Bachmann, 2009, Size effects in ordered arrays of magnetic nanotubes: pick your reversal mode, J Appl Phys, 105, 10.1063/1.3074109
Tsai, 2009, Preparation of vertically-aligned nickel nanowires with anodic aluminum oxide templates and their application as field emitters, Electrochem Commun, 11, 660, 10.1016/j.elecom.2009.01.002
Fang, 2003, Structural and optical properties of ZnO films grown on the AAO templates, Mater Lett, 57, 4187, 10.1016/S0167-577X(03)00287-8
Zong, 2005, Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide, J Chem Phys, 123, 094710, 10.1063/1.2018642
Li, 2006, Large-area highly-oriented sic nanowire arrays: synthesis, raman, and photoluminescence properties, J Phys Chem B, 110, 22382, 10.1021/jp063565b
Zhou, 2011, Tuning gold nanorod-nanoparticle hybrids into plasmonic fano resonance for dramatically enhanced light emission and transmission, Nano Lett, 11, 49, 10.1021/nl1026869
Huang, 2006, Photoluminescence oscillations in porous alumina films, Appl Phys Lett, 89, 201113, 10.1063/1.2390645
Chen, 2006, The investigation of photoluminescence centers in porous alumina membranes, Appl Phys A: Mater Sci Process, 84, 297, 10.1007/s00339-006-3623-z
Wada, 2007, Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules: possible mechanistic implications of metal surface melting, Anal Chem, 79, 9122, 10.1021/ac071414e
González, 2010, Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection, Sensor Actuat B: Chem, 144, 349, 10.1016/j.snb.2008.11.006
Matsumoto F et al. Nanometer-scale patterning of DNA in controlled intervals on a gold-disk array fabricated using ideally ordered anodic porous alumina. Adv Mater 17(13) (2005) 1609-1612.
Cheng, 2012, Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus, Anal Chim Acta, 725, 74, 10.1016/j.aca.2012.03.017
Myler, 2002, Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes, Biosens Bioelectron, 17, 35, 10.1016/S0956-5663(01)00265-2
Chen, 2002, A BOD biosensor based on a microorganism immobilized on an Al2O3 sol–gel matrix, Anal Bioanal Chem, 372, 737, 10.1007/s00216-001-1214-6
Bridge, 2006, Polydivinylbenzene/ethylvinylbenzene composite membranes for the optimization of a whole blood glucose sensor, Electroanalysis, 18, 95, 10.1002/elan.200503399