Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications

Progress in Materials Science - Tập 58 - Trang 636-704 - 2013
Abdul Mutalib Md Jani1,2, Dusan Losic3, Nicolas H. Voelcker4
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Chemistry Department, Faculty of Applied Sciences, Universiti Teknologi MARA, Arau 02600, Perlis, Malaysia
3School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
4Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia

Tài liệu tham khảo

Davis, 2002, Ordered porous materials for emerging applications, Nature, 417, 813, 10.1038/nature00785 Liu, 2010, Recent developments in bio-inspired special wettability, Chem Soc Rev, 39, 3240, 10.1039/b917112f Xia, 2008, Bio-inspired, smart, multiscale interfacial materials, Adv Mater, 20, 2842, 10.1002/adma.200800836 Colombo, 2008, In praise of pores, Science, 322, 381, 10.1126/science.1162962 Adiga, 2009, Nanoporous membranes for medical and biological applications, Wiley Interdiscipl Rev: Nanomed Nanobiotechnol, 1, 568, 10.1002/wnan.50 Majd, 2010, Applications of biological pores in nanomedicine, sensing, and nanoelectronics, Current Opin Biotechnol, 21, 439, 10.1016/j.copbio.2010.05.002 Stroeve, 2011, Biotechnical and other applications of nanoporous membranes, Trends Biotechnol, 29, 259, 10.1016/j.tibtech.2011.02.002 Whitesides, 1991, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science, 254, 1312, 10.1126/science.1962191 Cölfen, 2003, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew Chem Int Ed, 42, 2350, 10.1002/anie.200200562 Gomar-Nadal, 2008, Assembly of functional molecular nanostructures on surfaces, Chem Soc Rev, 37, 490, 10.1039/B703825A Gooding, 2003, Self-assembled monolayers into the 21st century: recent advances and applications, Electroanalysis, 15, 81, 10.1002/elan.200390017 Martin, 2003, The emerging field of nanotube biotechnology, Nat Rev Drug Discov, 2, 29, 10.1038/nrd988 Schmid, 2002, Materials in nanoporous alumina, J Mater Chem, 12, 1231, 10.1039/b110753b Ghicov, 2009, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO structures, Chem Commun, 2791, 10.1039/b822726h Grimes, 2007, Synthesis and application of highly ordered arrays of TiO2 nanotubes, J Mater Chem, 17, 1451, 10.1039/b701168g Anglin, 2008, Porous silicon in drug delivery devices and materials, Adv Drug Deliv Rev, 60, 1266, 10.1016/j.addr.2008.03.017 Stupp, 1997, Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science, 277, 1242, 10.1126/science.277.5330.1242 Wehrspohn RB. Ordered porous nanostructures and applications. In: Lockwood DJ, editor. Nanostructure science and technology, vol. 1. 2005, Springer. Ren, 2012, Ordered mesoporous metal oxides: synthesis and applications, Chem Soc Rev, 41, 4909, 10.1039/c2cs35086f Li, 1998, Hexagonal pore arrays with a 50–420nm interpore distance formed by self-organization in anodic alumina, J Appl Phys, 84, 6023, 10.1063/1.368911 Nielsch, 2002, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano Lett, 2, 677, 10.1021/nl025537k Furneaux, 1989, The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature, 337, 147, 10.1038/337147a0 Woo L, Jae-Cheon K. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 2010;21(48):485304. Yi L, et al. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem Commun 2009;46(2):309–11. Fan, 2007, Nano-porous anodic aluminium oxide membranes with 6–19nm pore diameters formed by a low-potential anodizing process, Nanotechnology, 18, 345302, 10.1088/0957-4484/18/34/345302 Lee, 2008, Self-ordered, controlled structure nanoporous membranes using constant current anodization, Nano Lett, 8, 4624, 10.1021/nl803271c Lee, 2010, spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions, Adv Funct Mater, 20, 21, 10.1002/adfm.200901213 Friedman, 2007, Roles of pH and acid type in the anodic growth of porous alumina, J Chem Phys, 127, 154717, 10.1063/1.2790429 Chu, 2006, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, J Electrochem Soc, 153, B384, 10.1149/1.2218822 Ono, 2005, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim Acta, 51, 827, 10.1016/j.electacta.2005.05.058 Sulka, 2009, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochim Acta, 54, 3683, 10.1016/j.electacta.2009.01.046 Li, 2000, Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina, Electrochem Solid-State Lett, 3, 131, 10.1149/1.1390979 Masuda, 1995, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466, 10.1126/science.268.5216.1466 Masuda, 2001, Square and triangular nanohole array architectures in anodic alumina, Adv Mater, 13, 189, 10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z Choi, 2005, Mechanism of guided self-organization producing quasi-monodomain porous alumina, Electrochim Acta, 50, 2591, 10.1016/j.electacta.2004.11.004 Masuda, 1997, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J Electrochem Soc, 144, L127, 10.1149/1.1837634 Vrublevsky, 2005, Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique, Appl Surf Sci, 242, 333, 10.1016/j.apsusc.2004.08.034 Schneider, 2005, Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology, Eur J Inorg Chem, 2005, 2352, 10.1002/ejic.200401046 Thompson, 1981, Porous anodic film formation on aluminium, Nature, 290, 230, 10.1038/290230a0 Diggle, 2002, Anodic oxide films on aluminum, Chem Rev, 69, 365, 10.1021/cr60259a005 Lee, 2006, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat Mater, 5, 741, 10.1038/nmat1717 Lee, 2008, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nat Nano, 3, 234, 10.1038/nnano.2008.54 Ono, 2004, Controlling factor of self-ordering of anodic porous alumina, J Electrochem Soc, 151, B473, 10.1149/1.1767838 Singh, 2006, Formation of self-organized nanoscale porous structures in anodic aluminum oxide, Phys Rev B, 73, 205422, 10.1103/PhysRevB.73.205422 Jessensky, 1998, Self-organized formation of hexagonal pore structures in anodic alumina, J Electrochem Soc, 145, 3735, 10.1149/1.1838867 Losic, 2009, Self-ordered nanopore and nanotube platforms for drug delivery applications, Expert Opin Drug Deliv, 6, 1363, 10.1517/17425240903300857 Parkhutik, 1992, Theoretical modelling of porous oxide growth on aluminium, J Phys D: Appl Phys, 25, 1258, 10.1088/0022-3727/25/8/017 Houser, 2009, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films, Nat Mater, 8, 415, 10.1038/nmat2423 Macak, 2005, Smooth anodic TiO2 nanotubes, Angew Chem Int Ed, 44, 7463, 10.1002/anie.200502781 Hahn, 2007, Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes, Electrochem Commun, 9, 947, 10.1016/j.elecom.2006.11.037 Lee, 2006, Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography, Small, 2, 978, 10.1002/smll.200600100 Lu, 2006, Microbead patterning on porous films with ordered arrays of pores, Adv Mater, 18, 3094, 10.1002/adma.200600744 Krishnan, 2007, Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spacing and diameter, Adv Mater, 19, 988, 10.1002/adma.200601555 Chen, 2010, Novel patterns by focused ion beam guided anodization, Langmuir, 27, 800, 10.1021/la1038393 Sun, 2002, Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films, Appl Phys Lett, 81, 3458, 10.1063/1.1517719 Maria-Chong, 2007, Soft imprinting: creating highly ordered porous anodic alumina templates on substrates for nanofabrication, Adv Funct Mater, 17, 1629, 10.1002/adfm.200600993 Stasi, 2007, Aluminium pre-patterning for highly ordered nanoporous anodized alumina, Photon Nanostruct – Fund Appl, 5, 136, 10.1016/j.photonics.2007.07.009 Kustandi, 2010, Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography, ACS Nano, 4, 2561, 10.1021/nn1001744 Jee, 2005, Fabrication of microstructures by wet etching of anodic aluminum oxide substrates, Chem Mater, 17, 4049, 10.1021/cm0486565 Pereira, 2008, Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays, Small, 4, 572, 10.1002/smll.200700256 Li, 1999, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina, Adv Mater, 11, 483, 10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I Barela, 2005, Fabrication of patterned arrays with alternating regions of aluminum and porous aluminum oxide, Electrochem Solid-State Lett, 8, C4, 10.1149/1.1828353 Gowtham, 2008, Controlled fabrication of patterned lateral porous alumina membranes, Nanotechnology, 19, 035303, 10.1088/0957-4484/19/03/035303 Grasso, 2006, Nanostructuring of a porous alumina matrix for a biomolecular microarray, Nanotechnology, 17, 795, 10.1088/0957-4484/17/3/030 Huang, 2006, Observation of isolated nanopores formed by patterned anodic oxidation of aluminum thin films, Appl Phys Lett, 88, 233112, 10.1063/1.2212535 Harada, 2010, Anodic porous alumina masks with checkerboard pattern, Appl Phys Exp, 3, 015001, 10.1143/APEX.3.015001 Lei, 2007, Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks, Prog Mater Sci, 52, 465, 10.1016/j.pmatsci.2006.07.002 Li, 1999, Nanoelectronics: growing y-junction carbon nanotubes, Nature, 402, 253, 10.1038/46214 Meng, 2005, Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proc Natl Acad Sci USA, 102, 7074, 10.1073/pnas.0502098102 Audrey Yoke Yee, 2008, Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina, Adv Funct Mater, 18, 2057, 10.1002/adfm.200800061 Cheng, 2007, Tree-like alumina nanopores generated in a non-steady-state anodization, J Mater Chem, 17, 3493, 10.1039/b709618f Zakeri, 2007, Synthesis and characterization of nonlinear nanopores in alumina films, Chem Mater, 19, 1954, 10.1021/cm062595o Papadopoulos, 2000, Electronic transport in y-junction carbon nanotubes, Phys Rev Lett, 85, 3476, 10.1103/PhysRevLett.85.3476 Lee, 2008, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum, Nano Lett, 8, 2155, 10.1021/nl080280x Losic, 2009, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization, Small, 5, 1392, 10.1002/smll.200801645 Biao, 2007, Preparation of photonic crystals made of air pores in anodic alumina, Nanotechnology, 18, 365601, 10.1088/0957-4484/18/36/365601 Yamauchi, 2008, Evolution of standing mesochannels on porous anodic alumina substrates with designed conical holes, J Am Chem Soc, 130, 10165, 10.1021/ja7107036 Losic, 2009, Preparation of porous anodic alumina with periodically perforated pores, Langmuir, 25, 5426, 10.1021/la804281v Biswas, 2009, Self-supporting nanowire arrays templated in sacrificial branched porous anodic alumina for thermoelectric devices, Appl Phys Lett, 95, 073103, 10.1063/1.3207756 Yi, 2009, Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chem Commun, 309 Routkevitch, 1996, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, J Phys Chem, 100, 14037, 10.1021/jp952910m Lin, 2001, Microporous and dense inorganic membranes: current status and prospective, Separat Purif Technol, 25, 39, 10.1016/S1383-5866(01)00089-2 Ulman, 1996, Formation and structure of self-assembled monolayers, Chem Rev, 96, 1533, 10.1021/cr9502357 Martin, 1994, Nanomaterials: a membrane-based synthetic approach, Science, 266, 1961, 10.1126/science.266.5193.1961 Szczepanski, 2006, Stability of silane modifiers on alumina nanoporous membranes, J Membr Sci, 281, 587, 10.1016/j.memsci.2006.04.027 Schift, 2005, Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology, 16, S171, 10.1088/0957-4484/16/5/007 Velleman, 2009, Structural and chemical modification of porous alumina membranes, Micropor Mesopor Mater, 126, 87, 10.1016/j.micromeso.2009.05.024 Hendren, 2009, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J Membr Sci, 331, 1, 10.1016/j.memsci.2008.11.038 Odom, 2005, Solvent-extraction and langmuir-adsorption-based transport in chemically functionalized nanopore membranes, J Phys Chem B, 109, 20887, 10.1021/jp0524983 Ku, 2006, Evidence of ion transport through surface conduction in alkylsilane-functionalized nanoporous ceramic membranes, Langmuir, 22, 8277, 10.1021/la0615591 Popat, 2004, Surface modification of nanoporous alumina surfaces with poly(ethylene glycol), Langmuir, 20, 8035, 10.1021/la049075x La Flamme, 2007, Biocompatibility of nanoporous alumina membranes for immunoisolation, Biomaterials, 28, 2638, 10.1016/j.biomaterials.2007.02.010 Lee, 2005, Transport and functional behaviour of poly(ethylene glycol)-modified nanoporous alumina membranes, Nanotechnology, 16, 1335, 10.1088/0957-4484/16/8/059 Steinle, 2002, Ion channel mimetic micropore and nanotube membrane sensors, Anal Chem, 74, 2416, 10.1021/ac020024j Smuleac, 2005, Polythiol-functionalized alumina membranes for mercury capture, J Membr Sci, 251, 169, 10.1016/j.memsci.2004.11.012 Vlassiouk, 2005, Sensing DNA hybridization via ionic conductance through a nanoporous electrode, Langmuir, 21, 4776, 10.1021/la0471644 Vlassiouk, 2004, “Direct” detection and separation of DNA using nanoporous alumina filters, Langmuir, 20, 9913, 10.1021/la047959a Wang, 2009, Label-free DNA sensor based on surface charge modulated ionic conductance, ACS Nano, 3, 1004, 10.1021/nn900113x Takmakov, 2006, Application of anodized aluminum in fluorescence detection of biological species, Anal Bioanal Chem, 385, 954, 10.1007/s00216-006-0504-4 Yang, 2007, Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes, Biosens Bioelectron, 22, 3283, 10.1016/j.bios.2007.03.006 Hobler, 2010, A functional immobilization of semiconductor nanoparticles (quantum dots) on nanoporous aluminium oxide, Phys Status Solidi (a), 207, 872, 10.1002/pssa.200983313 Tanvir, 2009, Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications, J Membr Sci, 329, 85, 10.1016/j.memsci.2008.12.015 Leary Swan, 2005, Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion, Biomaterials, 26, 1969, 10.1016/j.biomaterials.2004.07.001 Demirel, 2011, Surface-induced self-assembly of dipeptides onto nanotextured surfaces, Langmuir, 27, 12533, 10.1021/la202750n Abdul MMJ, et al. Pore spanning lipid bilayers on silanised nanoporous alumina membranes. SPIE, 2008. Demé, 2005, Polymer-cushioned lipid bilayers in porous alumina, Eur Biophys J, 34, 170, 10.1007/s00249-004-0440-1 Largueze, 2010, Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina, Colloids Surf B – Biointerfaces, 79, 33, 10.1016/j.colsurfb.2010.03.011 Lazzara, 2012, Phospholipids as an alternative to direct covalent coupling: surface functionalization of nanoporous alumina for protein recognition and purification, J Colloid Interface Sci, 366, 57, 10.1016/j.jcis.2011.09.067 Li, 2009, Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method, J Membr Sci, 337, 310, 10.1016/j.memsci.2009.04.010 Sun, 2006, High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates, Chem Mater, 18, 4033, 10.1021/cm060554m Jain, 2007, High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes, Biomacromolecules, 8, 3102, 10.1021/bm700515m Wang, 2006, Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition, Mater Res Bull, 41, 1417, 10.1016/j.materresbull.2006.02.011 Sehayek, 2005, Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles, Chem Mater, 17, 3743, 10.1021/cm0501057 Lahav, 2003, Nanoparticle nanotubes, Angew Chem, 115, 5734, 10.1002/ange.200352216 Grimm, 2008, Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays, Nano Lett, 8, 1954, 10.1021/nl080842c Jani, 2009, Nanoporous anodic aluminium oxide membranes with layered surface chemistry, Chem Commun, 3062, 10.1039/b901745c Jani, 2010, Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes, Angew Chem Int Ed, 49, 7933, 10.1002/anie.201002504 Allara, 1985, Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface, Langmuir, 1, 45, 10.1021/la00061a007 Allara, 1985, Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface, Langmuir, 1, 52, 10.1021/la00061a008 Chang, 2006, Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption, J Membr Sci, 275, 70, 10.1016/j.memsci.2005.09.005 Cheow, 2007, Grafting of nanoporous alumina membranes and films with organic acids, Surface Interface Anal, 39, 601, 10.1002/sia.2573 Karaman, 2001, The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates, Colloids Surfaces A: Physicochem Eng Aspects, 182, 285, 10.1016/S0927-7757(00)00821-9 Öberg, 2001, Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface, Thin Solid Films, 397, 102, 10.1016/S0040-6090(01)01422-5 ter Maat, 2011, Organic modification and subsequent biofunctionalization of porous anodic alumina using terminal alkynes, Langmuir, 27, 13606, 10.1021/la203738h Janshoff, 2006, Transport across artificial membranes—an analytical perspective, Anal Bioanal Chem, 385, 433, 10.1007/s00216-006-0305-9 Schmitt, 2008, Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading, Soft Matter, 4, 250, 10.1039/B716723G Chekmenev, 2006, Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy, Biophys J, 91, 3076, 10.1529/biophysj.106.085191 Proux-Delrouyre, 2002, Formation of tethered and streptavidin-supported lipid bilayers on a microporous electrode for the reconstitution of membranes of large surface area, Langmuir, 18, 3263, 10.1021/la011585t Hennesthal, 2000, Pore-spanning lipid bilayers visualized by scanning force microscopy, J Am Chem Soc, 122, 8085, 10.1021/ja000940j Hennesthal, 2002, Membrane-suspended nanocompartments based on ordered pores in alumina, ChemPhysChem, 3, 885, 10.1002/1439-7641(20021018)3:10<885::AID-CPHC885>3.0.CO;2-9 Drexler, 2003, Pore-suspending lipid bilayers on porous alumina investigated by electrical impedance spectroscopy, J Phys Chem B, 107, 11245, 10.1021/jp030762r Schmitt, 2009, Impedance analysis of gramicidin D in pore-suspending membranes, Soft Matter, 5, 3347, 10.1039/b901683j Smirnov, 2003, Substrate-supported lipid nanotube arrays, J Am Chem Soc, 125, 8434, 10.1021/ja0349406 Guo, 2006, Dimension control of glycolipid nanotubes by successive use of vesicle extrusion and porous template, Chem Mater, 18, 1577, 10.1021/cm051980v Li, 2008, Polarization-dependent fluorescence of proteins bound to nanopore-confined lipid bilayers, J Chem Phys, 129, 095102, 10.1063/1.2972143 Peyratout, 2004, Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers, Angew Chem Int Ed, 43, 3762, 10.1002/anie.200300568 Balachandra, 2002, Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+, Macromolecules, 35, 3171, 10.1021/ma0116349 Liu, 2003, Size-selective transport of uncharged solutes through multilayer polyelectrolyte membranes, Chem Mater, 16, 351, 10.1021/cm034559k Hong, 2006, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, J Membr Sci, 280, 1, 10.1016/j.memsci.2006.04.028 Hong, 2007, Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23, 1716, 10.1021/la061701y Hong, 2009, Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes, J Membr Sci, 327, 2, 10.1016/j.memsci.2008.11.035 Ouyang, 2008, Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations, J Membr Sci, 310, 76, 10.1016/j.memsci.2007.10.031 Dai, 2005, Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption, Anal Chem, 78, 135, 10.1021/ac0513966 Dotzauer, 2006, Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports, Nano Lett, 6, 2268, 10.1021/nl061700q He, 2009, Self-assembly of composite nanotubes and their applications, Current Opin Colloid Interface Sci, 14, 115, 10.1016/j.cocis.2008.09.005 Qi, 2003, Optical emission of conjugated polymers adsorbed to nanoporous alumina, Nano Lett, 3, 1265, 10.1021/nl034070q Jain, 2009, Applications of polymer brushes in protein analysis and purification, Annu Rev Anal Chem, 2, 387, 10.1146/annurev-anchem-060908-155153 Barbey, 2009, Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem Rev, 109, 5437, 10.1021/cr900045a Nagale, 2000, Ultrathin, hyperbranched poly(acrylic acid) membranes on porous alumina supports, J Am Chem Soc, 122, 11670, 10.1021/ja002203t Balachandra, 2003, Preparation of composite membranes by atom transfer radical polymerization initiated from a porous support, J Membr Sci, 227, 1, 10.1016/j.memsci.2003.07.009 Sun, 2005, Polymer brush membranes for pervaporation of organic solvents from water, Macromolecules, 38, 2307, 10.1021/ma047510o Grajales, 2010, Effects of monomer composition on CO2—selective polymer brush membranes, Chem Mater., 22, 4026, 10.1021/cm100740n Lee, 2009, Polymer brushes make nanopore filter membranes size selective to dissolved polymers, Macromolecules, 43, 565, 10.1021/ma9019569 Bruening, 2008, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes, Langmuir, 24, 7663, 10.1021/la800179z Stuart, 2010, Emerging applications of stimuli-responsive polymer materials, Nat Mater, 9, 101, 10.1038/nmat2614 Cui, 2006, Synthesis of PNIPAM-co-MBAA copolymer nanotubes with composite control, Langmuir, 22, 8205, 10.1021/la0605079 Cui, 2005, Synthesis of thermosensitive PNIPAM-co-MBAA nanotubes by atom transfer radical polymerization within a porous membrane, Macromol Rapid Commun, 26, 1552, 10.1002/marc.200500373 Fu, 2004, Reversible control of free energy and topography of nanostructured surfaces, J Am Chem Soc, 126, 8904, 10.1021/ja047895q Wang, 2006, Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations, J Am Chem Soc, 128, 15954, 10.1021/ja065116v Gorman, 2008, Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization, Macromolecules, 41, 4856, 10.1021/ma8004857 Lau, 2009, In situ characterization of n-carboxy anhydride polymerization in nanoporous anodic alumina, J Phys Chem B, 113, 3179, 10.1021/jp809593d Shi, 2008, Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation, J Membr Sci, 325, 801, 10.1016/j.memsci.2008.09.003 Song, 2011, pH-sensitive characteristics of poly(acrylic acid)-functionalized anodic aluminum oxide (AAO) membranes, J Membr Sci, 372, 340, 10.1016/j.memsci.2011.02.017 Oliveira, 2008, Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites, React Funct Polym, 68, 27, 10.1016/j.reactfunctpolym.2007.10.009 Jeon, 2011, Electrically actuatable smart nanoporous membrane for pulsatile drug release, Nano Lett, 11, 1284, 10.1021/nl104329y Hench, 1990, The sol–gel process, Chem Rev, 90, 33, 10.1021/cr00099a003 Kickelbick, 2005, Formation of hexagonal mesoporous silica in submicrometer channels, Small, 1, 168, 10.1002/smll.200400098 Lakshmi, 1997, Sol–gel template synthesis of semiconductor oxide micro- and nanostructures, Chem Mater, 9, 2544, 10.1021/cm970268y Hunks, 2005, Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs), J Mater Chem, 15, 3716, 10.1039/b504511h Yamaguchi, 2004, Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane, Nat Mater, 3, 337, 10.1038/nmat1107 Wang, 2009, Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres, J Mater Chem, 19, 1331, 10.1039/b817156d Ma, 2009, Hierarchically structured anatase nanotubes and membranes, Micropor Mesopor Mater, 124, 162, 10.1016/j.micromeso.2009.05.007 Rørvik, 2009, Template-assisted synthesis of PbTiO3 nanotubes, J Eur Ceram Soc, 29, 2575, 10.1016/j.jeurceramsoc.2009.02.004 Xin, 2007, Formation of titania/silica hybrid nanowires containing linear mesocage arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition, Angew Chem Int Ed, 46, 6829, 10.1002/anie.200700923 Li, 2005, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries, J Phys Chem B, 109, 14017, 10.1021/jp051900a Wang, 2009, One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties, Nanotechnology, 20, 345704, 10.1088/0957-4484/20/34/345704 Park, 2009, Silicon nanotube battery anodes, Nano Lett, 9, 3844, 10.1021/nl902058c Shi, 2008, NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties, Chem Phys Lett, 454, 75, 10.1016/j.cplett.2008.01.069 Mikhail, 2009, Polymer-derived SiOC nanotubes and nanorods via a template approach, Eur J Inorg Chem, 2009, 3496, 10.1002/ejic.200801239 Lee, 2002, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science, 296, 2198, 10.1126/science.1071396 Platschek, 2008, Vertical columnar block-copolymer-templated mesoporous silica via confined phase transformation, J Am Chem Soc, 130, 17362, 10.1021/ja803102y Platschek, 2006, Tuning the structure and orientation of hexagonally ordered mesoporous channels in anodic alumina membrane hosts: a 2D small-angle x-ray scattering study, Angew Chem, 118, 1152, 10.1002/ange.200503301 Wu, 2004, Composite mesostructures by nano-confinement, Nat Mater, 3, 816, 10.1038/nmat1230 Lu, 2004, Ordered SBA-15 nanorod arrays inside a porous alumina membrane, J Am Chem Soc, 126, 8650, 10.1021/ja0488378 Zhang, 2012, Synthesis of silica nanotubes with orientation controlled mesopores in porous membranes via interfacial growth, Chem Mater, 24, 1005, 10.1021/cm300242n Cazacu, 2009, Dynamic hybrid materials for constitutional self-instructed membranes, Proc Natl Acad Sci, 106, 8117, 10.1073/pnas.0813257106 Shi, 2010, Lysine-attached anodic aluminum oxide (AAO)-silica affinity membrane for bilirubin removal, J Membr Sci, 349, 333, 10.1016/j.memsci.2009.11.066 Saumitra, 2007, SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping, Nanotechnology, 18, 275705, 10.1088/0957-4484/18/27/275705 Berrigan, 2011, Protein-enabled layer-by-layer syntheses of aligned, porous-wall, high-aspect-ratio TiO2 nanotube arrays, Adv Funct Mater, 21, 1693, 10.1002/adfm.201002676 Wang, 2007, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries, Adv Mater, 19, 3016, 10.1002/adma.200602189 Bae, 2008, Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications, Chem Mater, 20, 756, 10.1021/cm702138c Hurst, 2006, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods, Angew Chem Int Ed, 45, 2672, 10.1002/anie.200504025 Hong Jin, 2006, Semiconductor nanowires: from self-organization to patterned growth, Small, 2, 700, 10.1002/smll.200500495 Thompson, 1978, Nucleation and growth of porous anodic films on aluminium, Nature, 272, 433, 10.1038/272433a0 Liu, 2008, Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane, Nanotechnology, 19, 335604, 10.1088/0957-4484/19/33/335604 Lee, 2009, Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis, Sensor Actuat B: Chem, 136, 320, 10.1016/j.snb.2008.12.054 Qin, 2008, General assembly method for linear metal nanoparticle chains embedded in nanotubes, Nano Lett, 8, 3221, 10.1021/nl801548h Woo, 2005, A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes, Angew Chem Int Ed, 44, 6050, 10.1002/anie.200501341 Burdick, 2009, High-throughput templated multisegment synthesis of gold nanowires and nanorods, Nanotechnology, 20, 065306, 10.1088/0957-4484/20/6/065306 Hoang, 2009, Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications, Nanotechnology, 20, 125607, 10.1088/0957-4484/20/12/125607 Kondo, 2009, Surface enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina, Appl Phys Exp, 2, 0320001 Hassan, 1984, A review of electroless gold deposition processes, Gold Bull, 17 Niesen, 2002, Review: deposition of ceramic thin films at low temperatures from aqueous solutions, Solid State Ionics, 151, 61, 10.1016/S0167-2738(02)00604-5 Wirtz, 2002, Template synthesized gold nanotube membranes for chemical separations and sensing, Analyst, 127, 871, 10.1039/b201939f Cheng, 2010, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering, Nanotechnology, 21, 015604, 10.1088/0957-4484/21/1/015604 Yu, 2012, Gold nanotube membranes have catalytic properties, Micropor Mesopor Mater, 153, 131, 10.1016/j.micromeso.2011.12.011 Velleman, 2012, The effects of surface functionality positioning on the transport properties of membranes, J Membr Sci, 411–412, 211, 10.1016/j.memsci.2012.04.033 Zhou, 2008, Ternary alloy Ni–W–P nanoparticles electroless deposited within alumina nanopores, Mater Sci Technol, 24, 1250, 10.1179/174328407X168829 Zhang, 2004, Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates, Chem Commun, 1106, 10.1039/b315931k Wang, 2007, Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition, Mater Lett, 61, 3795, 10.1016/j.matlet.2006.12.035 Piao, 2005, Nanostructured materials prepared by use of ordered porous alumina membranes, Electrochim Acta., 50, 2997, 10.1016/j.electacta.2004.12.043 Hou, 2004, Layer-by-layer nanotube template synthesis, J Am Chem Soc, 126, 5674, 10.1021/ja049537t Nguyen, 2008, Development of a biomimetic nanoporous membrane for the selective transport of charged proteins, Bioinspirat Biomim, 3, 035008, 10.1088/1748-3182/3/3/035008 Cheow, 2008, Transport and separation of proteins across platinum-coated nanoporous alumina membranes, Electrochim Acta, 53, 4669, 10.1016/j.electacta.2008.01.070 Teng, 2009, Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes, Small, 5, 2333, 10.1002/smll.200900577 Zhang, 2008, Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering, Spectrochim Acta Part A: Mol Biomol Spectrosc, 69, 91, 10.1016/j.saa.2007.03.035 Pereira, 2007, Functionally modified macroporous membrane prepared by using pulsed laser deposition, Adv Funct Mater, 17, 443, 10.1002/adfm.200600866 Wang, 2007, Large-area uniform nanodot arrays embedded in porous anodic alumina, Nanotechnology, 18, 015303, 10.1088/0957-4484/18/1/015303 Siow, 2006, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review, Plasma Process Polym, 3, 392, 10.1002/ppap.200600021 Brevnov, 2004, Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of C4F8 on anodic aluminum oxide, J Electrochem Soc, 151, B484, 10.1149/1.1770917 Losic, 2008, Surface modification of nanoporous alumina membranes by plasma polymerization, Nanotechnology, 19, 245704, 10.1088/0957-4484/19/24/245704 Knez, 2007, Synthesis and surface engineering of complex nanostructures by atomic layer deposition, Adv Mater, 19, 3425, 10.1002/adma.200700079 Ott, 1996, Atomic layer controlled deposition of Al2O3 films using binary reaction sequence chemistry, Appl Surf Sci, 107, 128, 10.1016/S0169-4332(96)00503-X Berland, 1998, In situ monitoring of atomic layer controlled pore reduction in alumina tubular membranes using sequential surface reactions, Chem Mater, 10, 3941, 10.1021/cm980384g Elam, 2003, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem Mater, 15, 3507, 10.1021/cm0303080 Xiong, 2005, Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes, J Phys Chem B, 109, 14059, 10.1021/jp0503415 Banerjee, 2009, Nanotubular metal–insulator–metal capacitor arrays for energy storage, Nat Nano, 4, 292, 10.1038/nnano.2009.37 Pitzschel, 2009, Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes, ACS Nano, 3, 3463, 10.1021/nn900909q Liu, 2003, Electrical properties of zinc oxide nanowires and intramolecular p–n junctions, Appl Phys Lett, 83, 3168, 10.1063/1.1609232 Soroka, 2009, Template-based multiwalled TiO2/iron oxides nanotubes: structure and magnetic properties, J Appl Phys, 106, 084313, 10.1063/1.3245395 Marianna, 2009, Ta2O5- and TiO2-based nanostructures made by atomic layer deposition, Nanotechnology, 21, 035301 Bachmann, 2007, Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition, J Am Chem Soc, 129, 9554, 10.1021/ja072465w Martinson, 2007, ZnO nanotube based dye-sensitized solar cells, Nano Lett, 7, 2183, 10.1021/nl070160+ Martinson, 2008, Radial electron collection in dye-sensitized solar cells, Nano Lett, 8, 2862, 10.1021/nl8015285 Marianna, 2010, Ta2O5- and TiO2-based nanostructures made by atomic layer deposition, Nanotechnology, 21, 035301, 10.1088/0957-4484/21/3/035301 George, 2009, Atomic layer deposition: an overview, Chem Rev, 110, 111, 10.1021/cr900056b Marichy, 2012, Atomic layer deposition of nanostructured materials for energy and environmental applications, Adv Mater, 24, 1017, 10.1002/adma.201104129 Choy, 2003, Chemical vapour deposition of coatings, Prog Mater Sci, 48, 57, 10.1016/S0079-6425(01)00009-3 Miranda, 2009, Direct coupling of a carbon nanotube membrane to a mass spectrometer: contrasting nanotube and capillary tube introduction systems, J Membr Sci, 344, 26, 10.1016/j.memsci.2009.07.037 Popp, 2009, Porous carbon nanotube-reinforced metals and ceramics via a double templating approach, Carbon, 47, 3208, 10.1016/j.carbon.2009.07.034 Park, 2009, Carbon nanosyringe array as a platform for intracellular delivery, Nano Lett, 9, 1325, 10.1021/nl802962t Che, 1998, Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method, Chem Mater, 10, 260, 10.1021/cm970412f Fan, 2008, Sensitive optical biosensors for unlabeled targets: a review, Anal Chim Acta, 620, 8, 10.1016/j.aca.2008.05.022 Altalhi, 2010, Synthesis of carbon nanotube (CNT) composite membranes, Membranes, 1, 37, 10.3390/membranes1010037 Ansari, 2008, Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD, Biosens Bioelectron, 23, 1838, 10.1016/j.bios.2008.02.022 Khodin, 2009, Nanomorph silicon grown on template alumina substrate by plasma-enhanced CVD, Mater Lett, 63, 2552, 10.1016/j.matlet.2009.09.002 Lai, 2008, Templated electrosynthesis of nanomaterials and porous structures, J Colloid Interface Sci, 323, 203, 10.1016/j.jcis.2008.04.054 Kuchibhatla, 2007, One dimensional nanostructured materials, Prog Mater Sci, 52, 699, 10.1016/j.pmatsci.2006.08.001 Barth, 2010, Synthesis and applications of one-dimensional semiconductors, Prog Mater Sci, 55, 563, 10.1016/j.pmatsci.2010.02.001 Woo, 2010, Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization, Nanotechnology, 21, 485304, 10.1088/0957-4484/21/48/485304 Li, 2008, Nanotube arrays in porous alumina membranes, J Mater Sci Technol, 24, 550 Kolmakov, 2004, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu Rev Mater Res, 34, 151, 10.1146/annurev.matsci.34.040203.112141 Taberna, 2006, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat Mater, 5, 567, 10.1038/nmat1672 Liu, 2009, Synthesis of iron–palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution, J Electroanal Chem, 633, 15, 10.1016/j.jelechem.2009.04.022 Yuan, 2004, Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays, Nanotechnology, 15, 59, 10.1088/0957-4484/15/1/011 Haberkorn, 2009, Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells, ACS Nano, 3, 1415, 10.1021/nn900207a Hong Jin, 2005, Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach, Nanotechnology, 16, 913, 10.1088/0957-4484/16/6/048 Chen, 2007, Instabilities in nanoporous media, Nano Lett, 7, 183, 10.1021/nl0621241 Lee, 2003, Synthesis of unidirectional alumina nanostructures without added organic solvents, J Am Chem Soc, 125, 2882, 10.1021/ja029494l Rabin, 2003, Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass, Adv Funct Mater, 13, 631, 10.1002/adfm.200304394 Yuan, 2002, Regular alumina nanopillar arrays, Adv Mater, 14, 303, 10.1002/1521-4095(20020219)14:4<303::AID-ADMA303>3.0.CO;2-D Chen, 2012, P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates, ACS Nano, 6, 1479, 10.1021/nn2043548 Choi, 2011, Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates, Langmuir, 27, 2132, 10.1021/la104839a Lin, 2001, Individual alumina nanotubes, Angew Chem Int Ed, 40, 1490, 10.1002/1521-3773(20010417)40:8<1490::AID-ANIE1490>3.0.CO;2-K Liu, 2011, Direct formation of thin-walled palladium nanotubes in nanochannels under an electrical potential, Chem Mater, 23, 1456, 10.1021/cm103013z Xiao, 2002, Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes, Nano Lett, 2, 1293, 10.1021/nl025758q Steinhart, 2004, Nanotubes by template wetting: a modular assembly system, Angew Chem Int Ed, 43, 1334, 10.1002/anie.200300614 Xia, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv Mater, 15, 353, 10.1002/adma.200390087 Cheng, 2007, Template-directed materials for rechargeable lithium-ion batteries, Chem Mater, 20, 667, 10.1021/cm702091q Wang, 2007, Template synthesis of nanostructured materials via layer-by-layer assembly, Chem Mater, 20, 848, 10.1021/cm7024813 Joshi, 2012, Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality, Chem Soc Rev, 41, 5285, 10.1039/c2cs35089k Kim, 2008, Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures, Anal Biochem, 379, 1, 10.1016/j.ab.2008.04.029 Alvarez, 2009, A label-free porous alumina interferometric immunosensor, ACS Nano, 3, 3301, 10.1021/nn900825q Pan, 2003, Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates, Nano Lett, 3, 811, 10.1021/nl034055l Dronov, 2011, Nanoporous alumina-based interferometric transducers ennobled, Nanoscale, 10.1039/c0nr00897d Feng, 2007, Graded-bandgap quantum- dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization, Adv Mater, 19, 1933, 10.1002/adma.200602311 Chang, 2009, Nanoporous membranes with mixed nanoclusters for raman-based label-free monitoring of peroxide compounds, Anal Chem, 81, 5740, 10.1021/ac900537d Wang, 2011, FITC-modified PPy nanotubes embedded in nanoporous AAO membrane can detect trace PCB20 via fluorescence ratiometric measurement, Chem Commun, 47, 3808, 10.1039/c0cc05371f Wang, 2011, Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane, Analyst, 136, 278, 10.1039/C0AN00510J Jia, 2004, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array, Solid State Commun, 130, 367, 10.1016/j.ssc.2004.02.033 Run-Ping, 2003, Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays, J Phys: Condens Matter, 15, 8271, 10.1088/0953-8984/15/49/006 Kumeria, 2012, Controlling interferometric properties of nanoporous anodic aluminium oxide, Nanoscale Res Lett, 7, 1, 10.1186/1556-276X-7-88 Kumeria, 2011, Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO), Phys Status Solidi (RRL) – Rapid Res Lett, 5, 406, 10.1002/pssr.201105425 Kumeria, 2012, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells, Biosens Bioelectron, 35, 167, 10.1016/j.bios.2012.02.038 Kim, 2007, Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry, Anal Chem, 79, 1855, 10.1021/ac061909o Lazzara, 2011, Benefits and limitations of porous substrates as biosensors for protein adsorption, Anal Chem, 83, 5624, 10.1021/ac200725y Ko, 2008, Porous substrates for label-free molecular level detection of nonresonant organic molecules, ACS Nano, 3, 181, 10.1021/nn800569f Ko, 2008, Nanostructured surfaces and assemblies as SERS media, Small, 4, 1576, 10.1002/smll.200800337 Ji, 2009, Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced raman scattering and thin film interference, Langmuir, 25, 11869, 10.1021/la901521j Wada, 2007, Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules:  possible mechanistic implications of metal surface melting, Anal Chem, 79, 9122, 10.1021/ac071414e Grieshaber, 2008, Electrochemical biosensors – sensor principles and architectures, Sensors, 8, 1400, 10.3390/s8031400 Stura, 2007, Anodic porous alumina as mechanical stability enhancer for LDL-cholesterol sensitive electrodes, Biosens Bioelectron, 23, 655, 10.1016/j.bios.2007.07.011 Shimomura, 2009, Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane, Talanta, 78, 217, 10.1016/j.talanta.2008.11.008 Xian, 2007, Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosens Bioelectron, 22, 2827, 10.1016/j.bios.2006.11.020 Darder, 2006, Encapsulation of enzymes in alumina membranes of controlled pore size, Thin Solid Films, 495, 321, 10.1016/j.tsf.2005.08.285 González, 2008, Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection, Sensor Actuat B: Chem, 144, 349, 10.1016/j.snb.2008.11.006 Maghsoodi, 2009, A novel biosensor using entangled carbon nanotubes layer grown on an alumina substrate by CCVD of methane on FeOx–MgO, Sensor Actuat B: Chem, 141, 526, 10.1016/j.snb.2009.06.042 Takmakov, 2006, Hydrothermally shrunk alumina nanopores and their application to DNA sensing, The Analyst, 131, 1248, 10.1039/b608084g Wang, 2009, A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection, Talanta, 78, 647, 10.1016/j.talanta.2008.12.001 Yu, 2009, A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection, Sensors Actuat A: Phys, 154, 288, 10.1016/j.sna.2008.07.005 Koh, 2007, Development of a membrane-based electrochemical immunosensor, Electrochim Acta, 53, 803, 10.1016/j.electacta.2007.07.055 Nguyen, 2009, Membrane-based electrochemical nanobiosensor for the detection of virus, Anal Chem, 81, 7226, 10.1021/ac900761a Zhou, 2009, Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose, Electrochem Commun, 11, 216, 10.1016/j.elecom.2008.11.010 Jagminas, 2007, Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing, Nanoscale Res Lett, 2, 130, 10.1007/s11671-007-9043-y de la Escosura-Muñiz, 2011, A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood, Small, 7, 675, 10.1002/smll.201002349 Yang, 2008, Study on the activity and stability of urease immobilized onto nanoporous alumina membranes, Micropor Mesopor Mater, 111, 359, 10.1016/j.micromeso.2007.08.009 Fu, 2008, Artificial molecular sieves and filters: a new paradigm for biomolecule separation, Trends Biotechnol, 26, 311, 10.1016/j.tibtech.2008.02.009 Bohn, 2009, Nanoscale control and manipulation of molecular transport in chemical analysis, Annu Rev Anal Chem, 2, 279, 10.1146/annurev-anchem-060908-155130 Punit Kohli, 2004, Nanotube membrane based biosensors, Electroanalysis, 16, 9, 10.1002/elan.200302916 Martin, 2001, Controlling ion-transport selectivity in gold nanotubule membranes, Adv Mater, 13, 1351, 10.1002/1521-4095(200109)13:18<1351::AID-ADMA1351>3.0.CO;2-W Bluhm, 1999, Surface effects on cation transport across porous alumina membranes, Langmuir, 15, 8668, 10.1021/la9902441 McCleskey, 2002, Asymmetric membranes with modified gold films as selective gates for metal ion separations, J Membr Sci, 210, 273, 10.1016/S0376-7388(02)00387-3 Le, 2002, Ultra-thin gates for the transport of phenol from supported liquid membranes to permanent surface modified membranes, J Membr Sci, 205, 213, 10.1016/S0376-7388(02)00114-X Dai, 2002, Controlling ion transport through multilayer polyelectrolyte membranes by derivatization with photolabile functional groups, Macromolecules, 35, 3164, 10.1021/ma011633g Yamaguchi, 2008, Diffusion of metal complexes inside of silica−surfactant nanochannels within a porous alumina membrane, J Phys Chem B, 112, 2024, 10.1021/jp0767516 Steenkamp, 2002, Copper(II) removal from polluted water with alumina/chitosan composite membranes, J Membr Sci, 197, 147, 10.1016/S0376-7388(01)00608-1 Yang, 2009, Preparation and assessment of fluorous supported liquid membranes based on porous alumina, J Membr Sci, 345, 170, 10.1016/j.memsci.2009.08.042 Yamaguchi, 2006, Extraction mechanisms of charged organic dye molecules into silica-surfactant nanochannels in a porous alumina membrane, Anal Chim Acta, 556, 157, 10.1016/j.aca.2005.06.029 Henrich, 1985, The surfaces of metal oxides, Rep Prog Phys, 48, 1481, 10.1088/0034-4885/48/11/001 Brown, 1998, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chem Rev, 99, 77, 10.1021/cr980011z Liu, 2010, Ion-exchange membranes prepared using layer-by-layer polyelectrolyte deposition, J Membr Sci, 354, 198, 10.1016/j.memsci.2010.02.047 Dotzauer, 2009, Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds, Langmuir, 25, 1865, 10.1021/la803220z Mitchell, 2002, Smart nanotubes for bioseparations and biocatalysis, J Am Chem Soc, 124, 11864, 10.1021/ja027247b Son, 2005, Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery, J Am Chem Soc, 127, 7316, 10.1021/ja0517365 Song, 2011, Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal, J Hazard Mater, 187, 311, 10.1016/j.jhazmat.2011.01.026 Yamashita, 2009, Separation of adenine, adenosine-5′-monophosphate and adenosine-5′-triphosphate by fluidic chip with nanometre-order diameter columns inside porous anodic alumina using an aqueous mobile phase, Lab Chip, 9, 1337, 10.1039/b901166h Osmanbeyoglu, 2009, Thin alumina nanoporous membranes for similar size biomolecule separation, J Membr Sci, 343, 1, 10.1016/j.memsci.2009.07.027 Lee, 2011, A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter, Lab Chip, 11, 1049, 10.1039/c0lc00499e Chen, 2012, Entrapment of protein in nanotubes formed by a nanochannel and ion-channel hybrid structure of anodic alumina, Small, 8, 1001, 10.1002/smll.201102117 Napoli, 2010, Nanofluidic technology for biomolecule applications: a critical review, Lab Chip, 10, 957, 10.1039/b917759k Fredlake, 2008, Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5minutes, Proc Natl Acad Sci, 105, 476, 10.1073/pnas.0705093105 Sano, 2003, Size-exclusion chromatography using self-organized nanopores in anodic porous alumina, Appl Phys Lett, 83, 4438, 10.1063/1.1629379 Chang, 2008, Preparation of inorganic–organic anion-exchange membranes and their application in plasmid DNA and RNA separation, J Membr Sci, 311, 336, 10.1016/j.memsci.2007.12.034 Moon, 2009, Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes, Biomed Microdevice, 11, 135, 10.1007/s10544-008-9217-0 Stair, 2006, Novel, uniform nanostructured catalytic membranes, Top Catal, 39, 181, 10.1007/s11244-006-0055-0 Wang, 2005, Mesoporous membrane device for asymmetric biosensing, Langmuir, 21, 1153, 10.1021/la0477340 Williams, 2008, On the mechanisms of biocompatibility, Biomaterials, 29, 2941, 10.1016/j.biomaterials.2008.04.023 Popat, 2005, Influence of nanoporous alumina membranes on long-term osteoblast response, Biomaterials, 26, 4516, 10.1016/j.biomaterials.2004.11.026 Swan, 2005, Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture, J Biomed Mater Res Part A, 72A, 288, 10.1002/jbm.a.30223 Popat, 2007, Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces, J Biomed Mater Res Part A, 80A, 955, 10.1002/jbm.a.31028 Karlsson, 2003, Initial in vitro interaction of osteoblasts with nano-porous alumina, Biomaterials, 24, 3039, 10.1016/S0142-9612(03)00146-7 Karlsson, 2004, Nanoporous aluminum oxide affects neutrophil behaviour, Microsc Res Techn, 63, 259, 10.1002/jemt.20040 Karlsson, 2006, Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina, J Mater Sci: Mater Med, 17, 1101, 10.1007/s10856-006-0537-4 Ferraz, 2008, Influence of nanoporesize on platelet adhesion and activation, J Mater Sci: Mater Med, 19, 3115, 10.1007/s10856-008-3449-7 Popat, 2004, Poly (ethylene glycol) grafted nanoporous alumina membranes, J Membr Sci, 243, 97, 10.1016/j.memsci.2004.05.030 Wolfrum, 2006, Suspended nanoporous membranes as interfaces for neuronal biohybrid systems, Nano Lett, 6, 453, 10.1021/nl052370x Prasad, 2006, Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring, Biosens Bioelectron, 21, 1219, 10.1016/j.bios.2005.05.005 Hoess, 2007, Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes, Acta Biomater, 3, 43, 10.1016/j.actbio.2006.07.007 Ishibashi, 2007, A porous membrane-based culture substrate for localized in situ electroporation of adherent mammalian cells, Sensor Actuat B: Chem, 128, 5, 10.1016/j.snb.2007.05.027 Graham, 2009, Neuronal cell biocompatibility and adhesion to modified CMOS electrodes, Biomed Microdevice, 11, 1091, 10.1007/s10544-009-9326-4 Kant, 2010, Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum, ACS Appl Mater Interface, 2, 3447, 10.1021/am100502u Sedel, 2000, Evolution of alumina-on-alumina implants: a review, Clin Orthopaed Relat Res, 379, 48, 10.1097/00003086-200010000-00008 Klawitter, 1977, An evaluation of porous alumina ceramic dental implants, J Dental Res, 56, 768, 10.1177/00220345770560071101 Karageorgiou, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474, 10.1016/j.biomaterials.2005.02.002 Mour, 2010, Advances in porous biomaterials for dental and orthopaedic applications, Materials, 3, 2947, 10.3390/ma3052947 Bose, 2002, Processing and characterization of porous alumina scaffolds, J Mater Sci: Mater Med, 13, 23, 10.1023/A:1013622216071 Briggs, 2004, Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating, J Mater Sci: Mater Med, 15, 1021, 10.1023/B:JMSM.0000042688.33507.12 Mainardes, 2004, Drug delivery systems: past, present, and future, Current Drug Targets, 5, 449, 10.2174/1389450043345407 Vallet-Regı´, 2007, Mesoporous materials for drug delivery, Angew Chem Int Ed, 46, 7548, 10.1002/anie.200604488 Jain, 2005, The role of nanobiotechnology in drug discovery, Drug Discov Today, 10, 1435, 10.1016/S1359-6446(05)03573-7 Simovic, 2010, Controlled drug release from porous materials by plasma polymer deposition, Chem Commun, 46, 1317, 10.1039/b919840g Aw, 2011, Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs, J Mater Chem, 10.1039/c0jm04307a Jeon, 2012, Functional nanoporous membranes for drug delivery, J Mater Chem, 22, 14814, 10.1039/c2jm32430j Wieneke, 2002, Stent coating: a new approach in interventional cardiology, Herz, 27, 518, 10.1007/s00059-002-2405-4 Kang, 2007, Controlled drug release using nanoporous anodic aluminum oxide on stent, Thin Solid Films, 515, 5184, 10.1016/j.tsf.2006.10.029 Wieneke, 2003, Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits, Catheterizat Cardiovasc Intervent, 60, 399, 10.1002/ccd.10664 Tao, 2003, Microfabricated drug delivery systems: from particles to pores, Adv Drug Deliv Rev, 55, 315, 10.1016/S0169-409X(02)00227-2 Desai, 2004, Nanoporous microsystems for islet cell replacement, Adv Drug Deliv Rev, 56, 1661, 10.1016/j.addr.2003.11.006 Gong, 2003, Controlled molecular release using nanoporous alumina capsules, Biomed Microdevice, 5, 75, 10.1023/A:1024471618380 La Flamme, 2007, The effects of cell density and device arrangement on the behavior of macroencapsulated-cells, Cell Transplant, 16, 765, 10.3727/000000007783465262 Flamme, 2005, Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility, Diabetes Technol Therapeut, 7, 684, 10.1089/dia.2005.7.684 Liu, 2010, Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors, Phys Chem Chem Phys, 12, 4309, 10.1039/b918589p Nakayama, 2008, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl Phys Lett, 93, 121903, 10.1063/1.2988288 Bachmann, 2009, Size effects in ordered arrays of magnetic nanotubes: pick your reversal mode, J Appl Phys, 105, 10.1063/1.3074109 Tsai, 2009, Preparation of vertically-aligned nickel nanowires with anodic aluminum oxide templates and their application as field emitters, Electrochem Commun, 11, 660, 10.1016/j.elecom.2009.01.002 Fang, 2003, Structural and optical properties of ZnO films grown on the AAO templates, Mater Lett, 57, 4187, 10.1016/S0167-577X(03)00287-8 Zong, 2005, Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide, J Chem Phys, 123, 094710, 10.1063/1.2018642 Li, 2006, Large-area highly-oriented sic nanowire arrays: synthesis, raman, and photoluminescence properties, J Phys Chem B, 110, 22382, 10.1021/jp063565b Zhou, 2011, Tuning gold nanorod-nanoparticle hybrids into plasmonic fano resonance for dramatically enhanced light emission and transmission, Nano Lett, 11, 49, 10.1021/nl1026869 Huang, 2006, Photoluminescence oscillations in porous alumina films, Appl Phys Lett, 89, 201113, 10.1063/1.2390645 Chen, 2006, The investigation of photoluminescence centers in porous alumina membranes, Appl Phys A: Mater Sci Process, 84, 297, 10.1007/s00339-006-3623-z Wada, 2007, Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules: possible mechanistic implications of metal surface melting, Anal Chem, 79, 9122, 10.1021/ac071414e González, 2010, Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection, Sensor Actuat B: Chem, 144, 349, 10.1016/j.snb.2008.11.006 Matsumoto F et al. Nanometer-scale patterning of DNA in controlled intervals on a gold-disk array fabricated using ideally ordered anodic porous alumina. Adv Mater 17(13) (2005) 1609-1612. Cheng, 2012, Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus, Anal Chim Acta, 725, 74, 10.1016/j.aca.2012.03.017 Myler, 2002, Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes, Biosens Bioelectron, 17, 35, 10.1016/S0956-5663(01)00265-2 Chen, 2002, A BOD biosensor based on a microorganism immobilized on an Al2O3 sol–gel matrix, Anal Bioanal Chem, 372, 737, 10.1007/s00216-001-1214-6 Bridge, 2006, Polydivinylbenzene/ethylvinylbenzene composite membranes for the optimization of a whole blood glucose sensor, Electroanalysis, 18, 95, 10.1002/elan.200503399