Comparison of homotopy perturbation method and homotopy analysis method
Tài liệu tham khảo
Liao, 1992, A second-order approximate analytical solution of a simple pendulum by the process analysis method, ASME J. Appl. Mech., 59, 970, 10.1115/1.2894068
Liao, 1994, A new kind of nonlinear analytical method based on homotopy technology (1), J. Shanghai Mech., 15, 28
Liao, 1995, An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 30, 371, 10.1016/0020-7462(94)00054-E
Liao, 1995, A new kind of nonlinear analytical method based on homotopy technology (2), J. Shanghai Mech., 16, 129
Liao, 1997, A kind of approximate solution technique which does not depend upon small parameters––II: an application in fluid mechanics, Int. J. Non-Linear Mech., 32, 815, 10.1016/S0020-7462(96)00101-1
Liao, 1997, Homotopy analysis method: A kind of nonlinear analytical technique not depending on small parameters, J. Shanghai Mech., 18, 196
Liao, 1998, Homotopy analysis method: a new analytic method for nonlinear problems, Appl. Math. Mech. (English-Ed.), 19, 957, 10.1007/BF02457955
S.J. Liao, Homotopy analysis method: a new analytical method for nonlinear problems without small parameters, in: The 3rd International Conference on Nonlinear Mechanics, Shanghai, 1998, pp. 829–833
Liao, 1998, An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate, Commun. Nonlinear Sci. Numer. Simulat., 3, 53, 10.1016/S1007-5704(98)90061-2
Liao, 1999, An explicit, totally analytic approximate solution for Blasius' viscous flow problem, Int. J. Non-Linear Mech., 34, 759, 10.1016/S0020-7462(98)00056-0
Liao, 1999, A uniformly valid analytic solution of two dimensional viscous flow over a semi-infinite plat plate, J. Fluid Mech., 385, 101, 10.1017/S0022112099004292
Liao, 2001, A non-iterative numerical approach for 2-D viscous flow problems governed by the Falkner–Skan equation, Int. J. Numer. Methods Fluids, 35, 495, 10.1002/1097-0363(20010315)35:5<495::AID-FLD987>3.0.CO;2-Q
Hillermeier, 2001, Generalized homotopy approach to multiobjective optimization, Int. J. Optim. Theory Appl., 110, 557, 10.1023/A:1017536311488
He, 1998, An approximate solution technique depending upon an artificial parameter, Commun. Nonlinear Sci. Numer. Simulat., 3, 92, 10.1016/S1007-5704(98)90070-3
He, 1998, Newton-like iteration method for solving algebraic equations, Commun. Nonlinear Sci. Numer. Simulat., 3, 106, 10.1016/S1007-5704(98)90073-9
He, 1999, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engng., 178, 257, 10.1016/S0045-7825(99)00018-3
He, 2000, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35, 37, 10.1016/S0020-7462(98)00085-7
Mallil, 2000, An iterative process based on homotopy and perturbation techniques, Comput. Methods Appl. Mech. Engng., 190, 1845, 10.1016/S0045-7825(00)00198-5
J.-M. Cadou, N. Moustaghfir, E.H. Mallil, N. Damil, M. Potier-Ferry, Linear iterative solvers based on perturbation techniques, C.R. Acad. Sci. Paris, 2001, T.329, Serie II b: 457–462
Elhage-Hussein, 2000, A numerical continuation method based on Pade approximants, Int. J. Solids Struct., 37, 6981, 10.1016/S0020-7683(99)00323-6
R.E.L. Mokhtari, J.-M. Cadou, M. Potier-Ferry, Une approche multigrille basee sur les techniques d'homotopie et de perturbation pour la resolution de problems d'elasticite lineare, XVeme Congres Francais de Mecanique, Nancy, 3–7 Septembre, 2001, pp. 1–6
Jegen, 2001, Using homotopy to invert geophysical data, Geophysics, 66, 1749, 10.1190/1.1487117
G.-L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in: C. Cheng et al. (Ed.), Modern Mathematics and Mechanics (MMM)-VII, Shanghai University Press, Shanghai, 1997, pp. 47–53 (in Chinese)
Damil, 1999, An iterative method based upon Pade approximants, Commun. Numer. Methods Engng., 15, 701, 10.1002/(SICI)1099-0887(199910)15:10<701::AID-CNM283>3.0.CO;2-L
Bender, 1989, A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447, 10.1063/1.528326
Andrianov, 2000, Construction of periodic solution to partial differential equations with nonlinear boundary conditions, Int. J. Nonlinear Sci. Numer. Simulat., 1, 327, 10.1515/IJNSNS.2000.1.4.327
He, 2002, A Note on delta–perturbation method, Appl. Math. Mech., 23, 558
He, 2000, A review on some new recently developed nonlinear analytical techniques, Int. J. Nonlinear Sci. Numer. Simulat., 1, 51, 10.1515/IJNSNS.2000.1.1.51
He, 2002, Modified Lindstedt–Poincare Methods for some strongly nonlinear oscillations. Part I: expansion of a constant, Int. J. Non-Linear Mech., 37, 309, 10.1016/S0020-7462(00)00116-5
He, 2002, Modified Lindstedt–Poincare Methods for some strongly nonlinear oscillations. Part II: a new transformation, Int. J. Non-Linear Mech., 37, 315, 10.1016/S0020-7462(00)00117-7
He, 2001, Modified Lindstedt–Poincare Methods for some strongly nonlinear oscillations. Part III: double series expansion, Int. J. Non-Linear Sci. Numer. Simulat., 2, 317, 10.1515/IJNSNS.2001.2.4.317
Nayfeh, 1981
He, 1999, Modified straightforward expansion, Meccanica, 34, 287, 10.1023/A:1004730415955
Wazwaz, 1998, A comparison between Adomian decomposition method and Taylor series method in the series solutions, Appl. Math. Comput., 97, 37, 10.1016/S0096-3003(97)10127-8
Wang, 1990
He, 1998, Approximate analytical solution of Blasius's equation, Commun. Nonlinear Sci. Numer. Simulat., 3, 206, 10.1016/S1007-5704(98)90046-6
Howarth, 1938, On the solution of the laminar boundary layer equation, Proc. R. Soc. Lond. A, 164, 547, 10.1098/rspa.1938.0037