Genome-wide association study of PR interval

Nature Genetics - Tập 42 Số 2 - Trang 153-159 - 2010
Arne Pfeufer1, Charlotte van Noord2, Kristin D. Marciante3, Dan E. Arking4, Martin G. Larson5, Albert V. Smith6, Kirill V. Tarasov7, Martina Müller8, Nona Sotoodehnia9, Moritz F. Sinner10, Germaine C. Verwoert2, Man Li2, W.H. Linda Kao11, Anna Köttgen11, Josef Coresh11, Joshua C. Bis3, Bruce M. Psaty3, Kenneth Rice12, Jerome I. Rotter13, Fernando Rivadeneira2, Albert Hofman2, Jan A. Kors14, Bruno H. Stricker2, André G. Uitterlinden2, Cornelia M. van Duijn2, Britt Maria Beckmann10, Wiebke Sauter8, Christian Gieger8, Steven A. Lubitz15, Christopher Newton‐Cheh16, Thomas J. Wang17, Jared W. Magnani18, Renate B. Schnabel17, Mina K. Chung19, John Barnard19, Jonathan Smith19, David R. Van Wagoner19, Ramachandran S. Vasan17, Thor Aspelund6, Guðný Eiríksdóttir6, Tamara B. Harris20, Lenore J. Launer20, Samer S. Najjar7, Edward G. Lakatta7, David Schlessinger21, Manuela Uda22, Gonçalo R. Abecasis23, Bertram Müller‐Myhsok24, Georg Ehret4, Eric Boerwinkle25, Aravinda Chakravarti4, Elsayed Z. Soliman26, Kathryn L. Lunetta27, Siegfried Perz28, H‐Erich Wichmann8, Thomas Meitinger29, Daniel Levy17, Vilmundur Gudnason30, Patrick T. Ellinor16, Serena Sanna22, Stefan Kääb10, Jacqueline C.M. Witteman31, Álvaro Alonso32, Emelia J. Benjamin33, Susan R. Heckbert34
1Institute of Human Genetics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
2Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
3Department of Medicine, University of Washington, Seattle, Washington USA
4McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
5Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
6Icelandic Heart Association, Heart Preventive Clinic and Research Institute, Kopavogur, Iceland
7Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, USA
8Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
9Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
10Department of Medicine I, Klinikum Grosshadern, Munich, Germany
11Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
12Department of Biostatistics, University of Washington, Seattle, Washington, USA.
13Department of Common Diseases Genetics Program, Medical Genetics Institute, Cedars-Sinai Medical Center, West Hollywood, California, USA
14Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
15Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
16Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
17National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA.
18Boston University School of Medicine, Boston, Massachusetts USA
19Heart & Vascular and Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA
20Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Baltimore, Maryland, USA
21Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, USA
22Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy.,
23Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
24Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
25Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
26Department of Epidemiology and Prevention, Division of Public Health Sciences, Epidemiological Cardiology Research Center (EPICARE), Wake Forest University Medical Center, Winston-Salem, North Carolina, USA
27Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
28Institute of Biological and Medical Imaging, Helmholtz Center, Munich, Germany
29Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg Germany
30Heart Preventive Clinical and Research Institute, University of Iceland, Reykjavik, Iceland
31Netherlands Consortium on Healthy Aging (NCHA) Leiden, The Netherlands
32Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
33Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
34Group Health Research Institute, Seattle, Washington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Havlik, R.J., Garrison, R.J., Fabsitz, R. & Feinleib, M. Variability of heart rate, P-R, QRS and Q-T durations in twins. J. Electrocardiol. 13, 45–48 (1980).

Hanson, B. et al. Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am. J. Cardiol. 63, 606–609 (1989).

Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

Newton-Cheh, C. et al. Genome wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med. Genet. 8, S7 (2007).

Benjamin, E.J. et al. Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation 119, 606–618 (2009).

Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).

Fox, C.S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. J. Am. Med. Assoc. 291, 2851–2855 (2004).

Gudbjartsson, D.F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).

Benjamin, E.J. et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat. Genet. 41, 879–881 (2009).

Sinner, M.F. et al. The non-synonymous coding IKr-channel variant KCNH2–K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). Eur. Heart J. 29, 907–914 (2008).

Olsson, S.B., Cotoi, S. & Varnauskas, E. Monophasic action potential and sinus rhythm stability after conversion of atrial fibrillation. Acta Med. Scand. 190, 381–387 (1971).

Soliman, E.Z., Prineas, R.J., Case, L.D., Zhang, Z.M. & Goff, D.C. Jr. Ethnic distribution of ECG predictors of atrial fibrillation and its impact on understanding the ethnic distribution of ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 40, 1204–1211 (2009).

Cheng, S. et al. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. J. Am. Med. Assoc. 301, 2571–2577 (2009).

Schnabel, R.B. et al. Development of a risk score for atrial fibrillation (the Framingham Heart Study): a community-based cohort study. Lancet 373, 739–745 (2009).

Harris, T.B. et al. Age, Gene/Environment Susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165, 1076–1087 (2007).

ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. Am. J. Epidemiol. 129, 687–702 (1989).

Fried, L.P. et al. The Cardiovascular Health Study: design and rationale. Ann. Epidemiol. 1, 263–276 (1991).

Splansky, G.L. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007).

Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen–resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67, S26–S30 (2005).

Hofman, A. et al. The Rotterdam Study: objectives and design update. Eur. J. Epidemiol. 22, 819–829 (2007).

The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

Nothnagel, M., Ellinghaus, D., Schreiber, S., Krawczak, M. & Franke, A. A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125, 163–171 (2009).

Chung, M.K. et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104, 2886–2891 (2001).

Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

Zimmermann, K. et al. Sensory neuron sodium channel NaV1.8 is essential for pain at low temperatures. Nature 447, 855–858 (2007).

Rabert, D.K. et al. A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hPN3/SCN10A. Pain 78, 107–114 (1998).

Remme, C.A., Wilde, A.A. & Bezzina, C.R. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc. Med. 18, 78–87 (2008).

Newton-Cheh, C. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).

Pfeufer, A. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414 (2009).

Jay, P.Y. et al. Function follows form: cardiac conduction system defects in Nkx2-5 mutation. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 280, 966–972 (2004).

Mesbah, K., Harrelson, Z., Théveniau-Ruissy, M., Papaioannou, V.E. & Kelly, R.G. Tbx3 is required for outflow tract development. Circ. Res. 103, 743–750 (2008).

Moskowitz, I.P. et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129, 1365–1376 (2007).

Mori, A.D. et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev. Biol. 297, 566–586 (2006).

Postma, A.V. et al. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ. Res. 102, 1433–1442 (2008).

Hoogaars, W.M. et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21, 1098–1112 (2007).

Schinzel, A. Ulnar-mammary syndrome. J. Med. Genet. 24, 778–781 (1987).

Gratton, J.P., Bernatchez, P. & Sessa, W.C. Caveolae and caveolins in the cardiovascular system. Circ. Res. 94, 1408–1417 (2004).

Zhao, Y.Y. et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. USA 99, 11375–11380 (2002).

Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).

Stankunas, K. et al. Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ. Res. 103, 702–709 (2008).

Pandur, P., Läsche, M., Eisenberg, L.M. & Kühl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002).

Su, Z.J. et al. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 101, 12212–12217 (2004).

Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

Willems, J.L. et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N. Engl. J. Med. 325, 1767–1773 (1991).

Perz, S., et al. & for the KORA Study Group Does computerized ECG analysis provide sufficiently consistent QT interval estimates for genetic research? in Analysis of Biomedical Signals and Images (eds. Jan, J., Kozumplik, J. & Provaznik, I.) 47–49 (Vutium, Brno, Czech Republic, 2004).

Arking, D.E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

van Bemmel, J.H., Kors, J.A. & van Herpen, G. Methodology of the modular ECG analysis system MEANS. Methods Inf. Med. 29, 346–353 (1990).

Rabbee, N. & Speed, T.P. A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 22, 7–12 (2006).

Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

Servin, B. & Stephens, M. Imputation based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

Chen, W.M. & Abecasis, G. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).