ShengBTE: A solver of the Boltzmann transport equation for phonons
Tài liệu tham khảo
Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C
Yeh, 2002
Wright, 2011, The design of rewritable ultrahigh density scanning-probe phase-change memories, IEEE Trans. Nanotechnol., 10, 900, 10.1109/TNANO.2010.2089638
Manthilake, 2011, Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core, Proc. Natl. Acad. Sci. USA, 108, 17901, 10.1073/pnas.1110594108
Ziman, 1960
Callaway, 1959, Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046, 10.1103/PhysRev.113.1046
Allen, 2013, Improved callaway model for lattice thermal conductivity, Phys. Rev. B, 88, 144302, 10.1103/PhysRevB.88.144302
Omini, 1995, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Physica B, 212, 101, 10.1016/0921-4526(95)00016-3
Omini, 1996, Beyond the isotropic-model approximation in the theory of thermal conductivity, Phys. Rev. B, 53, 9064, 10.1103/PhysRevB.53.9064
Omini, 1997, Heat transport in dielectric solids with diamond structure, Nuovo Cimento D, 19, 1537
Deinzer, 2003, Ab initio calculation of the linewidth of various phonon modes in germanium and silicon, Phys. Rev. B, 67, 144304, 10.1103/PhysRevB.67.144304
Broido, 2007, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett., 91, 231922, 10.1063/1.2822891
Esfarjani, 2008, Method to extract anharmonic force constants from first principles calculations, Phys. Rev. B, 77, 144112, 10.1103/PhysRevB.77.144112
Tang, 2009, Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: a first-principles calculation and implications for lattice thermal conductivity, Phys. Earth Planet. Inter., 174, 33, 10.1016/j.pepi.2008.10.003
Tang, 2010, Lattice thermal conductivity of MgO at conditions of earth’s interior, Proc. Natl. Acad. Sci. USA, 107, 4539, 10.1073/pnas.0907194107
Ward, 2010, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B, 81, 085205, 10.1103/PhysRevB.81.085205
Ward, 2009, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80, 125203, 10.1103/PhysRevB.80.125203
Fugallo, 2013, Ab initio variational approach for evaluating lattice thermal conductivity, Phys. Rev. B, 88, 045430, 10.1103/PhysRevB.88.045430
Garg, 2011, Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study, Phys. Rev. Lett., 106, 045901, 10.1103/PhysRevLett.106.045901
Tian, 2012, Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations, Phys. Rev. B, 85, 184303, 10.1103/PhysRevB.85.184303
Lindsay, 2012, Thermal conductivity and large isotope effect in GaN from first principles, Phys. Rev. Lett., 109, 095901, 10.1103/PhysRevLett.109.095901
Li, 2012, Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles, Phys. Rev. B, 86, 174307, 10.1103/PhysRevB.86.174307
Lindsay, 2013, Ab initio thermal transport in compound semiconductors, Phys. Rev. B, 87, 165201, 10.1103/PhysRevB.87.165201
Dekura, 2013, Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in earth’s lower mantle, Phys. Rev. Lett., 110, 025904, 10.1103/PhysRevLett.110.025904
Li, 2013, Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles, J. Appl. Phys., 114, 183505, 10.1063/1.4827419
Pang, 2013, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory, Phys. Rev. Lett., 110, 157401, 10.1103/PhysRevLett.110.157401
Lindsay, 2013, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?, Phys. Rev. Lett., 111, 025901, 10.1103/PhysRevLett.111.025901
Bonini, 2012, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene, Nano Lett., 12, 2673, 10.1021/nl202694m
Li, 2013, Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles, Appl. Phys. lett., 103, 253103, 10.1063/1.4850995
Li, 2012, Thermal conductivity of diamond nanowires from first principles, Phys. Rev. B, 85, 195436, 10.1103/PhysRevB.85.195436
Mingo, 2014, Ab initio thermal transport, 137
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Giannozzi, 2009, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21, 395502
Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 134106, 10.1103/PhysRevB.78.134106
Spaldin, 2012, A beginner’s guide to the modern theory of polarization, J. Solid State Chem., 195, 2, 10.1016/j.jssc.2012.05.010
Pick, 1970, Microscopic theory of force constants in the adiabatic approximation, Phys. Rev. B, 1, 910, 10.1103/PhysRevB.1.910
Gonze, 1994, Interatomic force constants from first principles: the case of α-quartz, Phys. Rev. B, 50, 13035, 10.1103/PhysRevB.50.13035
Wang, 2010, A mixed-space approach to first-principles calculations of phonon frequencies for polar materials, J. Phys.: Condens. Matter, 22, 202201
Peierls, 1929, Zur kinetischen theorie der warmeleitung in kristallen, Ann. Phys. Lpz., 3, 1055, 10.1002/andp.19293950803
Lindsay, 2008, Three-phonon phase space and lattice thermal conductivity in semiconductors, J. Phys.: Condens. Matter, 20, 165209
Kundu, 2011, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys, Phys. Rev. B, 84, 125426, 10.1103/PhysRevB.84.125426
Tamura, 1983, Isotope scattering of dispersive phonons in Ge, Phys. Rev. B, 27, 858, 10.1103/PhysRevB.27.858
Berglund, 2011, Isotopic compositions of the elements 2009 (IUPAC technical report), Pure Appl. Chem., 83, 397, 10.1351/PAC-REP-10-06-02
A. Togo, spglib, a C library for finding and handling crystal symmetries, http://spglib.sourceforge.net/.
Chambers, 1950, The conductivity of thin wires in a magnetic field, Proc. R. Soc. Lond. Ser. A, 202, 378, 10.1098/rspa.1950.0107
Favot, 1999, Phonon dispersions: performance of the generalized gradient approximation, Phys. Rev. B, 60, 11427, 10.1103/PhysRevB.60.11427
Corso, 2013, Ab initio phonon dispersions of transition and noble metals: effects of the exchange and correlation functional, J. Phys.: Condens. Matter, 25, 145401
Broido, 2013, Ab initio study of the unusual thermal transport properties of boron arsenide and related materials, Phys. Rev. B, 88, 214303, 10.1103/PhysRevB.88.214303
Kremer, 2004, Thermal conductivity of isotopically enriched 28Si: revisited, Solid State Commun., 131, 499, 10.1016/j.ssc.2004.06.022
Inyushkin, 2004, On the isotope effect in thermal conductivity of silicon, Phys. Status Solidi C, 1, 2995, 10.1002/pssc.200405341
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Levinshtein, 1996, 10.1142/2046-vol2
Tamarin, 1971, Thermal conductivity and thermoelectric power of indium arsenide at low temperatures, Sov. Phys. Semicond., 5, 1097
LeGuillou, 1972, Phonon conductivity of InAs, Phys. Rev. B, 5, 2301, 10.1103/PhysRevB.5.2301
Okhotin, 1972
Bowers, 2004, InAs and InSb as thermoelectric materials, J. Appl. Phys., 30, 930, 10.1063/1.1735264
Curtarolo, 2013, The high-throughput highway to computational materials design, Nature Mater., 12, 191, 10.1038/nmat3568
Frondel, 1967, Lonsdaleite, a hexagonal polymorph of diamond, Nature, 214, 587, 10.1038/214587a0
Bhargava, 1995, Diamond polytypes in the chemical vapor deposited diamond films, Appl. Phys. Lett., 67, 1706, 10.1063/1.115023
Bundy, 2004, Hexagonal diamond—a new form of carbon, J. Chem. Phys., 46, 3437, 10.1063/1.1841236
A. De, C.E. Pryor, Electronic structure and optical properties of the lonsdaleite phase of Si, Ge and diamond, arXiv e-print 1210.7392, 2012. http://arxiv.org/abs/1210.7392.
Inagaki, 2013
Pan, 2009, Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite, Phys. Rev. Lett., 102, 055503, 10.1103/PhysRevLett.102.055503
Warren, 1967, Lattice dynamics of diamond, Phys. Rev., 158, 805, 10.1103/PhysRev.158.805
Setyawan, 2010, High-throughput electronic band structure calculations: challenges and tools, Comput. Math. Sci., 49, 299, 10.1016/j.commatsci.2010.05.010