ShengBTE: A solver of the Boltzmann transport equation for phonons

Computer Physics Communications - Tập 185 - Trang 1747-1758 - 2014
Wu Li1, Jesús Carrete1, Nebil A. Katcho1, Natalio Mingo1
1CEA, DRT, 38054 Grenoble, France

Tài liệu tham khảo

Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C Yeh, 2002 Wright, 2011, The design of rewritable ultrahigh density scanning-probe phase-change memories, IEEE Trans. Nanotechnol., 10, 900, 10.1109/TNANO.2010.2089638 Manthilake, 2011, Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core, Proc. Natl. Acad. Sci. USA, 108, 17901, 10.1073/pnas.1110594108 Ziman, 1960 Callaway, 1959, Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046, 10.1103/PhysRev.113.1046 Allen, 2013, Improved callaway model for lattice thermal conductivity, Phys. Rev. B, 88, 144302, 10.1103/PhysRevB.88.144302 Omini, 1995, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity, Physica B, 212, 101, 10.1016/0921-4526(95)00016-3 Omini, 1996, Beyond the isotropic-model approximation in the theory of thermal conductivity, Phys. Rev. B, 53, 9064, 10.1103/PhysRevB.53.9064 Omini, 1997, Heat transport in dielectric solids with diamond structure, Nuovo Cimento D, 19, 1537 Deinzer, 2003, Ab initio calculation of the linewidth of various phonon modes in germanium and silicon, Phys. Rev. B, 67, 144304, 10.1103/PhysRevB.67.144304 Broido, 2007, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett., 91, 231922, 10.1063/1.2822891 Esfarjani, 2008, Method to extract anharmonic force constants from first principles calculations, Phys. Rev. B, 77, 144112, 10.1103/PhysRevB.77.144112 Tang, 2009, Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: a first-principles calculation and implications for lattice thermal conductivity, Phys. Earth Planet. Inter., 174, 33, 10.1016/j.pepi.2008.10.003 Tang, 2010, Lattice thermal conductivity of MgO at conditions of earth’s interior, Proc. Natl. Acad. Sci. USA, 107, 4539, 10.1073/pnas.0907194107 Ward, 2010, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B, 81, 085205, 10.1103/PhysRevB.81.085205 Ward, 2009, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80, 125203, 10.1103/PhysRevB.80.125203 Fugallo, 2013, Ab initio variational approach for evaluating lattice thermal conductivity, Phys. Rev. B, 88, 045430, 10.1103/PhysRevB.88.045430 Garg, 2011, Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study, Phys. Rev. Lett., 106, 045901, 10.1103/PhysRevLett.106.045901 Tian, 2012, Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations, Phys. Rev. B, 85, 184303, 10.1103/PhysRevB.85.184303 Lindsay, 2012, Thermal conductivity and large isotope effect in GaN from first principles, Phys. Rev. Lett., 109, 095901, 10.1103/PhysRevLett.109.095901 Li, 2012, Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles, Phys. Rev. B, 86, 174307, 10.1103/PhysRevB.86.174307 Lindsay, 2013, Ab initio thermal transport in compound semiconductors, Phys. Rev. B, 87, 165201, 10.1103/PhysRevB.87.165201 Dekura, 2013, Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in earth’s lower mantle, Phys. Rev. Lett., 110, 025904, 10.1103/PhysRevLett.110.025904 Li, 2013, Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles, J. Appl. Phys., 114, 183505, 10.1063/1.4827419 Pang, 2013, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory, Phys. Rev. Lett., 110, 157401, 10.1103/PhysRevLett.110.157401 Lindsay, 2013, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?, Phys. Rev. Lett., 111, 025901, 10.1103/PhysRevLett.111.025901 Bonini, 2012, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene, Nano Lett., 12, 2673, 10.1021/nl202694m Li, 2013, Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles, Appl. Phys. lett., 103, 253103, 10.1063/1.4850995 Li, 2012, Thermal conductivity of diamond nanowires from first principles, Phys. Rev. B, 85, 195436, 10.1103/PhysRevB.85.195436 Mingo, 2014, Ab initio thermal transport, 137 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Giannozzi, 2009, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21, 395502 Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 134106, 10.1103/PhysRevB.78.134106 Spaldin, 2012, A beginner’s guide to the modern theory of polarization, J. Solid State Chem., 195, 2, 10.1016/j.jssc.2012.05.010 Pick, 1970, Microscopic theory of force constants in the adiabatic approximation, Phys. Rev. B, 1, 910, 10.1103/PhysRevB.1.910 Gonze, 1994, Interatomic force constants from first principles: the case of α-quartz, Phys. Rev. B, 50, 13035, 10.1103/PhysRevB.50.13035 Wang, 2010, A mixed-space approach to first-principles calculations of phonon frequencies for polar materials, J. Phys.: Condens. Matter, 22, 202201 Peierls, 1929, Zur kinetischen theorie der warmeleitung in kristallen, Ann. Phys. Lpz., 3, 1055, 10.1002/andp.19293950803 Lindsay, 2008, Three-phonon phase space and lattice thermal conductivity in semiconductors, J. Phys.: Condens. Matter, 20, 165209 Kundu, 2011, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys, Phys. Rev. B, 84, 125426, 10.1103/PhysRevB.84.125426 Tamura, 1983, Isotope scattering of dispersive phonons in Ge, Phys. Rev. B, 27, 858, 10.1103/PhysRevB.27.858 Berglund, 2011, Isotopic compositions of the elements 2009 (IUPAC technical report), Pure Appl. Chem., 83, 397, 10.1351/PAC-REP-10-06-02 A. Togo, spglib, a C library for finding and handling crystal symmetries, http://spglib.sourceforge.net/. Chambers, 1950, The conductivity of thin wires in a magnetic field, Proc. R. Soc. Lond. Ser. A, 202, 378, 10.1098/rspa.1950.0107 Favot, 1999, Phonon dispersions: performance of the generalized gradient approximation, Phys. Rev. B, 60, 11427, 10.1103/PhysRevB.60.11427 Corso, 2013, Ab initio phonon dispersions of transition and noble metals: effects of the exchange and correlation functional, J. Phys.: Condens. Matter, 25, 145401 Broido, 2013, Ab initio study of the unusual thermal transport properties of boron arsenide and related materials, Phys. Rev. B, 88, 214303, 10.1103/PhysRevB.88.214303 Kremer, 2004, Thermal conductivity of isotopically enriched 28Si: revisited, Solid State Commun., 131, 499, 10.1016/j.ssc.2004.06.022 Inyushkin, 2004, On the isotope effect in thermal conductivity of silicon, Phys. Status Solidi C, 1, 2995, 10.1002/pssc.200405341 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Levinshtein, 1996, 10.1142/2046-vol2 Tamarin, 1971, Thermal conductivity and thermoelectric power of indium arsenide at low temperatures, Sov. Phys. Semicond., 5, 1097 LeGuillou, 1972, Phonon conductivity of InAs, Phys. Rev. B, 5, 2301, 10.1103/PhysRevB.5.2301 Okhotin, 1972 Bowers, 2004, InAs and InSb as thermoelectric materials, J. Appl. Phys., 30, 930, 10.1063/1.1735264 Curtarolo, 2013, The high-throughput highway to computational materials design, Nature Mater., 12, 191, 10.1038/nmat3568 Frondel, 1967, Lonsdaleite, a hexagonal polymorph of diamond, Nature, 214, 587, 10.1038/214587a0 Bhargava, 1995, Diamond polytypes in the chemical vapor deposited diamond films, Appl. Phys. Lett., 67, 1706, 10.1063/1.115023 Bundy, 2004, Hexagonal diamond—a new form of carbon, J. Chem. Phys., 46, 3437, 10.1063/1.1841236 A. De, C.E. Pryor, Electronic structure and optical properties of the lonsdaleite phase of Si, Ge and diamond, arXiv e-print 1210.7392, 2012. http://arxiv.org/abs/1210.7392. Inagaki, 2013 Pan, 2009, Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite, Phys. Rev. Lett., 102, 055503, 10.1103/PhysRevLett.102.055503 Warren, 1967, Lattice dynamics of diamond, Phys. Rev., 158, 805, 10.1103/PhysRev.158.805 Setyawan, 2010, High-throughput electronic band structure calculations: challenges and tools, Comput. Math. Sci., 49, 299, 10.1016/j.commatsci.2010.05.010