Label-free biomarker detection from whole blood

Nature Nanotechnology - Tập 5 Số 2 - Trang 138-142 - 2010
Eric Stern1, Aleksandar Vacic2, Nitin K. Rajan2, Jason M. Criscione1, Jason Y. Park1, B. Ilic3, David Mooney4, Mark A. Reed2, Tarek M. Fahmy5
1Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06511, Connecticut, USA
2Department of Electrical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06511, Connecticut, USA
3Cornell Nanofabrication Facility, Cornell University, Ithaca, 14853, New York, USA
4Department of Bioengineering, School of Engineering and Applied Science, Harvard University, Cambridge, 02138, Massachusetts, USA
5Department of Chemical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06511, Connecticut, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sander, C. Genomic medicine and the future of health care. Science 287, 1977–1978 (2000).

Jemal, A. et al. Cancer statistics 2008. CA Cancer J. Clin. 58, 71–96 (2008).

Etzioni, R. et al. The case for early detection. Nature Rev. Cancer 3, 243–252 (2003).

Liang, S. & Chan, D. W. Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin. Chim. Acta 381, 93–97 (2007).

Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nature Biotechnol. 26, 1373–1378 (2008).

Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

Jain, K. K. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta 358, 37–54 (2005).

Burg, Thomas T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

Kim, A. et al. Ultrasensitive, label-free and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91, 103901 (2007).

Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

Stern, E., Vacic, A. & Reed, M. A. Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron. Dev. 55, 3119–3130 (2008).

Bunimovich, Y. L. et al. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128, 16323–16331 (2006).

Nagrath, S. et al. Isolation of rare circulating tumor cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

Gupta, A. K. et al. Anomalous resonance in a nanomechanical biosensor. Proc. Natl Acad. Sci. USA 103, 13362–13367 (2006).

Stern, E. et al. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007).

Zhou, H., Ranish, J. A., Watts, J. D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nature Biotechnol. 20, 512–515 (2002).

Templin, M. F., Stoll, D., Bachmann, J. & Joos, T. O. Protein microarrays and multiplexed sandwich immunoassays: what beats the beads? Comb. Chem. High Through. Screen 7, 223–229 (2004).

Hermanson, G. T. Bioconjugate Techniques (Elsevier, 1996).

Bai, X., Kim, S., Li, Z., Turro, N. J. & Ju, J. Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. Nucleic Acids Res. 32, 535–541 (2004).

Handwerger, R. G. & Diamond, S. L. Biotinylated photocleavable polyethylenimine: capture and triggered release of nucleic acids from solid supports. Bioconjug. Chem. 18, 717–723 (2007).

Senter, P. D. et al. Novel photocleavable protein crosslinking reagents and their use in the preparation of antibody–toxin conjugates. Photochem. Photobiol. 42, 231–237 (1985).

Olejnik, J. et al. Photocleavable biotin derivatives—a versatile approach for the isolation of biomolecules. Proc. Natl Acad. Sci. USA 92, 7590–7594 (1995).

Vickers, A. J., Savage, C., O'Brien, M. F. & Lilja, H. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J. Clin. Oncol. 27, 398–403 (2009).

Shariat, S. F., Scardino, P. T. & Lilja, H. Screening for prostate cancer: an update. Can. J. Urol. 15, 4363–4374 (2008).

Rubach, M., Szymendera, J. J., Kaminska, J. & Kowalska, M. Serum CA 15.3, CEA and ESR patterns in breast cancer. Int. J. Biol. Markers 12, 168–173 (1997).

Uehara, M. et al. Long-term prognostic study of carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA 15-3) in breast cancer. Int. J. Clin. Oncol. 13, 447–451 (2008).

Elfstrom, N., Karlstrom, A. E. & Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 8, 945–949 (2008).

Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules (Freeman, 1980).

Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003).