Metal-insulator-semiconductor type diode based on implanted β-Ga2O3 epilayers grown on sapphire substrate by metalorganic chemical vapor deposition

Materials Today Advances - Tập 18 - Trang 100382 - 2023
Ray-Hua Horng1,2, Apoorva Sood1, Siddharth Rana1,3,4, Niall Tumilty3, Fu-Gow Tarntair1, Catherine Langpoklakpam5, Hao-Chung Kuo5, Jitendra Pratap Singh4
1Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
2Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
3International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
4Physics Department, Indian Institute of Technology, Delhi, New Delhi 110016 India
5Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC

Tài liệu tham khảo

Ahmadi, 2019, Materials issues and devices of α- and β-Ga2O3, J. Appl. Phys., 126, 10.1063/1.5123213 Wong, 2021, Ultrawide-bandgap semiconductors: an overview, J. Mater. Res., 36, 4601, 10.1557/s43578-021-00458-1 Roy, 1952, Polymorphism of Ga2O3 and the system Ga2O3—H2O, J. Am. Chem. Soc., 74, 719, 10.1021/ja01123a039 Aida, 2008, Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method, Jpn. J. Appl. Phys., 47, 8506, 10.1143/JJAP.47.8506 Tomm, 2000, Czochralski grown Ga2O3 crystals, J. Cryst. Growth, 220, 510, 10.1016/S0022-0248(00)00851-4 Irmscher, 2011, Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method, J. Appl. Phys., 110, 10.1063/1.3642962 Hoshikawa, 2016, Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air, J. Cryst. Growth, 447, 36, 10.1016/j.jcrysgro.2016.04.022 Villora, 2004, Large-size β-Ga2O3 single crystals and wafers, J. Cryst. Growth, 270, 420, 10.1016/j.jcrysgro.2004.06.027 Lyons, 2019, “ electronic properties of Ga2O3 polymorphs ,”, ECS J. Solid State Sci. Technol., 8, Q3226, 10.1149/2.0331907jss Masataka, 2016, Recent progress in Ga2O3 power devices, Semicond. Sci. Technol., 31 Shinohara, 2008, Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition, Jpn. J. Appl. Phys., 47, 7311, 10.1143/JJAP.47.7311 Tsao, 2018, Ultrawide-bandgap semiconductors: Research opportunities and challenges, Adv. Electron. Mater., 4, 10.1002/aelm.201600501 Lee, 2020, “ ultra-wide bandgap β -Ga2O3 heterojunction field-effect transistor using p-type 4H-SiC gate for efficient thermal management ,”, ECS J. Solid State Sci. Technol., 9, 10.1149/2162-8777/aba406 Zhou, 2017, Thermodynamic studies of β-Ga2O3 nanomembrane field-effect transistors on a sapphire substrate, ACS Omega, 2, 7723, 10.1021/acsomega.7b01313 Cheng, 2020, Integration of polycrystalline Ga2O3 on diamond for thermal management, Appl. Phys. Lett., 116, 10.1063/1.5125637 Sharma, 2019, “ thermal simulations of high current β-Ga2O3 Schottky rectifiers ,”, ECS J. Solid State Sci. Technol., 8, Q3195, 10.1149/2.0361907jss Pearton, 2018, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, J. Appl. Phys., 124, 10.1063/1.5062841 Yoshioka, 2007, Structures and energetics of Ga2O3 polymorphs, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/34/346211 Playford, 2013, Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction, Chem. Eur J., 19, 2803, 10.1002/chem.201203359 Zhang, 2020, Recent progress on the electronic structure, defect, and doping properties of Ga2O3, Apl. Mater., 8, 10.1063/1.5142999 Kamimura, 2021, Effect of (AlGa)2O3back barrier on device characteristics of β-Ga2O3 metal-oxide-semiconductor field-effect transistors with Si-implanted channel, Jpn. J. Appl. Phys., 60, 10.35848/1347-4065/abe3a4 Matsuzaki, 2006, Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor, Thin Solid Films, 496, 37, 10.1016/j.tsf.2005.08.187 Higashiwaki, 2012, Gallium oxide (Ga 2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Appl. Phys. Lett., 100, 1, 10.1063/1.3674287 Higashiwaki, 2013, Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics, Appl. Phys. Lett., 103, 1, 10.1063/1.4821858 Liu, 2019, Review of gallium oxide based field-effect transistors and Schottky barrier diodes, Chin. Phys. B, 28 Krishnamoorthy, 2017, Delta-doped β-gallium oxide field-effect transistor, APEX, 10 Gogova, 2015, Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE, CrystEngComm, 17, 6744, 10.1039/C5CE01106J Gogova, 2014, Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE, J. Cryst. Growth, 401, 665, 10.1016/j.jcrysgro.2013.11.056 Oh, 2015, Development of solar-blind photodetectors based on Si-implanted β-Ga2O3, Opt Express, 23, 10.1364/OE.23.028300 Khan, 2019, β-Ga2O3 thin film based lateral and vertical Schottky barrier diode, ECS J. Solid State Sci. Technol., 8, 10.1149/2.0211906jss Sun, 2018, HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD, Cryst. Growth Des., 18, 2370, 10.1021/acs.cgd.7b01791 Feng, 2019, A 800 V β-Ga2O3 metal–oxide–semiconductor field-effect transistor with high-power figure of merit of over 86.3 MW cm−2, Phys. Status Solidi Appl. Mater. Sci., 216, 2 Horng, 2022, Ion implantation effects on the characteristics of β-Ga2O3 epilayers grown on sapphire by MOCVD, Ceram. Int., 48, 36425, 10.1016/j.ceramint.2022.08.202 Grover, 2020, Standardization of specific contact resistivity measurements using transmission line model (TLM), IEEE Int. Conf. Microelectron. Test Struct., 2020 Hu, 2018, Lateral β -Ga2O3 Schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV, IEEE J. Electron Devices Soc., 6, 815, 10.1109/JEDS.2018.2853615 Hu, 2018, Field-Plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2, IEEE Electron. Device Lett., 39, 1564 Yadav, 2020, Performance enhancement of β-Ga2O3on Si (100) based Schottky barrier diodes using reduced surface field, Semicond. Sci. Technol., 35, 10.1088/1361-6641/ab8e64 Xu, 2019, High performance lateral Schottky diodes based on quasi-degenerated Ga2O3, Chin. Phys. B, 28, 10.1088/1674-1056/28/3/038503 Ji, 2021, Demonstration of large-size vertical Ga2O3 Schottky barrier diodes, IEEE Trans. Power Electron., 36, 41, 10.1109/TPEL.2020.3001530 Otsuka, 2022, Large-size (1.7x1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio, APEX, 15, 1 Sasaki, 2017, First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes, IEEE Electron. Device Lett., 38, 783, 10.1109/LED.2017.2696986 Sasaki, 2013, Si-Ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts, APEX, 6, 4 Sood, 2023, Electrical performance study of Schottky barrier diodes using ion implanted β-Ga2O3 epilayers grown on sapphire substrates, Mater. Today Adv., 17 Kamimura, 2014, Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions, Appl. Phys. Lett., 104, 10.1063/1.4876920