Recent developments in computer vision-based analytical chemistry: A tutorial review

Analytica Chimica Acta - Tập 899 - Trang 23-56 - 2015
Luis Fermín Capitán-Vallvey1, Nuria López-Ruiz2, Antonio Martínez-Olmos2, Miguel M. Erenas1, Alberto J. Palma2
1ECsens, Department of Analytical Chemistry, Campus Fuentenueva, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
2ECsens, CITIC-UGR, Department of Electronics and Computer Technology, Campus Fuentenueva, Faculty of Sciences, University of Granada, E-18071 Granada, Spain

Tài liệu tham khảo

Zolotov, 2002 Szabadváry, 1966 Gubala, 2011, Point of care diagnostics: status and future, Anal. Chem., 84, 487, 10.1021/ac2030199 Herold, 2009 Cate, 2014, Recent developments in paper-based microfluidic devices, Anal. Chem., 87, 19, 10.1021/ac503968p Capitan-Vallvey, 2005 Martinez, 2008, Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis, Anal. Chem., 80, 3699, 10.1021/ac800112r Martinez, 2009, Diagnostics for the developing world: microfluidic paper-based analytical devices, Anal. Chem., 82, 3, 10.1021/ac9013989 Oncescu, 2013, Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva, Lab Chip, 13, 3232, 10.1039/c3lc50431j Choi, 2014, Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone, Sens. Bio Sensing Res., 2, 8, 10.1016/j.sbsr.2014.08.001 Ozdalga, 2012, The smartphone in medicine: a review of current and potential use among physicians and students, J. Med. Internet Res., 14, e128, 10.2196/jmir.1994 Breslauer, 2009, Mobile phone based clinical microscopy for global health applications, PLoS One, 4, 10.1371/journal.pone.0006320 Pesenti, 2014, Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives, Anal. Chem., 86, 4707, 10.1021/ac403062y Lopez-Ruiz, 2014, Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices, Anal. Chem., 86, 9554, 10.1021/ac5019205 Lee, 2014, A smartphone platform for the quantification of vitamin D levels, Lab Chip, 14, 1437, 10.1039/C3LC51375K Gallegos, 2013, Label-free biodetection using a smartphone, Lab Chip, 13, 2124, 10.1039/c3lc40991k Cadle, 2010, Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications, Subst. Abuse Res. Treat., 4, 21 Cooper, 2015, Mobile image ratiometry: a new method for instantaneous analysis of rapid test strips, Nat. Preced. Mudanyali, 2012, Integrated rapid-diagnostic-test reader platform on a cellphone, Lab Chip, 12, 2678, 10.1039/c2lc40235a Ozcan, 2014, Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools, Lab Chip, 14, 3187, 10.1039/C4LC00010B Haggren, 1986, Real-time photogrammetry as used for machine vision applications, Int. Arch. Photogramm. Remote Sens., 5, 374 Brosnan, 2004, Improving quality inspection of food products by computer vision. A review, J. Food Eng., 61, 3, 10.1016/S0260-8774(03)00183-3 Prince, 2012 Reilley, 1960, Characterization of the color quality of indicator transition. Complementary tristimulus colorimetry, Anal. Chem., 32, 1218, 10.1021/ac60166a001 Prasad, 1996, Basic aspects and applications of tristimulus colorimetry, Talanta, 43, 1187, 10.1016/0039-9140(96)01871-1 Grudpan, 2015, Applications of everyday IT and communications devices in modern analytical chemistry: a review, Talanta, 136, 84, 10.1016/j.talanta.2014.12.042 Askim, 2013, Optical sensor arrays for chemical sensing: the optoelectronic nose, Chem. Soc. Rev., 42, 8649, 10.1039/c3cs60179j Petryayeva, 2015, Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles, RSC Adv., 5, 22256, 10.1039/C4RA15036H Byrne, 2000, Digital imaging as a detector for generic analytical measurements, TrAC Trends Anal. Chem., 19, 517, 10.1016/S0165-9936(00)00019-4 Wang, 2010, Optical oxygen sensors move towards colorimetric determination, Trac. Trends Anal. Chem., 29, 319, 10.1016/j.trac.2010.01.004 Li, 2012, A perspective on paper-based microfluidics: Current status and future trends, Biomicrofluidics, 6, 011301, 10.1063/1.3687398 Zhao, 2008, Lab on paper, Lab Chip, 8, 1988, 10.1039/b814043j Hu, 2014, Advances in paper-based point-of-care diagnostics, Biosens. Bioelectron., 54, 585, 10.1016/j.bios.2013.10.075 Jeong, 2013, Paper-based analytical device for quantitative urinalysis, Int. Neurourol. J., 17, 155, 10.5213/inj.2013.17.4.155 Yetisen, 2013, Paper-based microfluidic point-of-care diagnostic devices, Lab Chip, 13, 2210, 10.1039/c3lc50169h Vashist, 2013, Cellphone-based devices for bioanalytical sciences, Anal. Bioanal. Chem., 1 Hu, 2014, Advances in paper-based point-of-care diagnostics, Biosens. Bioelectron., 54, 585, 10.1016/j.bios.2013.10.075 Gorocs, 2014, Biomedical imaging and sensing using flatbed scanners, Lab Chip, 14, 3248, 10.1039/C4LC00530A Komuro, 2013, Inkjet printed (bio)chemical sensing devices, Anal. Bioanal. Chem., 405, 5785, 10.1007/s00216-013-7013-z Puiu, 2012, Color sensors and their applications, Springer Ser. Chem. Sens. Biosens, 10, 3, 10.1007/978-3-642-25498-7_1 Capitan-Vallvey, 2011, Recent developments in handheld and portable optosensing. A review, Anal. Chim. Acta, 696, 27, 10.1016/j.aca.2011.04.005 Sun, 2008, Determination of the protein content in rice by the digital chromatic method, J. Food Qual., 31, 250, 10.1111/j.1745-4557.2008.00192.x Lopez-Molinero, 2013, Feasibility of digital image colorimetry-application for water calcium hardness determination, Talanta, 103, 236, 10.1016/j.talanta.2012.10.038 Yokota, 1997, Collection on a membrane filter/solid-phase triestimulus colorimetry of mercury (II) with thiothenoyltrifluoroacetone, Bunseki Kagaku, 464, 689, 10.2116/bunsekikagaku.46.689 Lopez-Molinero, 2010, Chemometric interpretation of digital image colorimetry. Application for titanium determination in plastics, Microchem. J., 96, 380, 10.1016/j.microc.2010.06.013 Wu, 2013, Colour measurements by computer vision for food quality control. A review, Trends Food Sci. Tech., 29, 5, 10.1016/j.tifs.2012.08.004 Simpson, 1991, Imaging colorimetry: a new approach, Appl. Opt., 30, 4666, 10.1364/AO.30.004666 Shokrollahi, 2013, CPE-Scanometry as a new technique for the determination of dyes: application for the determination of fast green FCF dye and comparison with spectrophotometric results, Anal. Methods, 5, 4824, 10.1039/c3ay40183a Suzuki, 2006, Tristimulus colorimetry using a digital still camera and its application to determination of iron and residual chlorine in water samples, Anal. Sci., 22, 411, 10.2116/analsci.22.411 Janzen, 2006, Colorimetric sensor arrays for volatile organic compounds, Anal. Chem., 78, 3591, 10.1021/ac052111s Lin, 2011, Preoxidation for colorimetric sensor array detection of VOCs, J. Am. Chem. Soc., 133, 16786, 10.1021/ja207718t Chaplan, 2014, Paper-based standard addition assays, Anal. Methods, 6, 1296, 10.1039/C4AY00205A Iqbal, 2011, Colorimetric analysis of water and sand samples performed on a mobile phone, Talanta, 84, 1118, 10.1016/j.talanta.2011.03.016 Nitinaivinij, 2014, Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis, Anal. Methods, 6, 9816, 10.1039/C4AY02339K Cantrell, 2010, Use of the Hue parameter of the Hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors, Anal. Chem., 82, 531, 10.1021/ac901753c Feng, 2012, Colorimetric sensing of anions in water using ratiometric indicator-displacement assay, Anal. Chim. Acta, 743, 1, 10.1016/j.aca.2012.06.041 Roche, 2011, A camera phone localised surface plasmon biosensing platform towards low-cost label-free diagnostic testing, J. Sens., 7 Moraes, 2014, Low-cost method for quantifying sodium in coconut water and seawater for the undergraduate analytical chemistry laboratory: flame test, a mobile phone Camera, and image processing, J. Chem. Ed., 91, 1958, 10.1021/ed400797k Feng, 2013, A fluorometric paper-based sensor array for the discrimination of heavy-metal ions, Talanta, 108, 103, 10.1016/j.talanta.2013.02.073 Larsen, 2011, A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing, Limnol. Oceanogr. Methods, 9, 348, 10.4319/lom.2011.9.348 Park, 2010, Color intensity method for hydrogel oxygen sensor array, IEEE Sens. J, 10, 1855, 10.1109/JSEN.2010.2049837 Roda, 2011, Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis, Anal. Chem., 83, 3178, 10.1021/ac200360k Heyries, 2008, Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies, Biosens. Bioelectron., 23, 1812, 10.1016/j.bios.2008.02.025 Delaney, 2013, Reprint of: use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors, Anal. Chim. Acta, 803, 123, 10.1016/j.aca.2013.08.014 Wyszecki, 2000 Barry, 2006 Sonka, 2015 Pascale, 2002 Shishkin, 2004, Use of a scanner and digital image-processing software for the quantification of adsorbed substances, J. Anal. Chem., 59, 102, 10.1023/B:JANC.0000014733.32082.4b Abbaspour, 2006, Speciation of iron(II), iron(III) and full-range pH monitoring using paptode: a simple colorimetric method as an appropriate alternative for optodes, Sens. Actuators B, 113, 857, 10.1016/j.snb.2005.03.119 Feng, 2011, Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel(II) and lead(II), Analyst, 136, 4197, 10.1039/c1an15290d Iqbal, 2013, Classification and quantitative optical analysis of liquid and solid samples using a mobile phone as illumination source and detector, Sens. Actuators B, 185, 354, 10.1016/j.snb.2013.05.009 Meier, 2011, Simultaneous photographing of oxygen and pH in vivo using sensor films, Angew. Chem. Int. Ed., 50, 10893, 10.1002/anie.201104530 Martinez-Olmos, 2013, Screen printed flexible radiofrequency identification tag for oxygen monitoring, Anal. Chem., 85, 11098, 10.1021/ac4028802 Intaravanne, 2012, Cell phone-based two-dimensional spectral analysis for banana ripeness estimation, Sens. Actuators B, 168, 390, 10.1016/j.snb.2012.04.042 Gomez-Robledo, 2013, Using the mobile phone as munsell soil-colour sensor: an experiment under controlled illumination conditions, Comp. Elec. Agr., 99, 200, 10.1016/j.compag.2013.10.002 Suzuki, 2005, Optical sensors for ions and protein based on digital color analysis, Frontier in chemical sensors, Springer Ser. Chem. Sensors Biosens., 3, 343, 10.1007/3-540-27757-9_12 Evans, 2009, Design and color response of colorimetric multilumophore oxygen sensors, ACS Appl. Mater. Interfaces, 1, 1023, 10.1021/am900007m Cotton, 1996 Tkalcic, 2003, Vol. 1, 304 Berns, 2000 Berlien, 2004 Paciornik, 2006, Scanner image analysis in the quantification of mercury using spot-tests, J. Braz. Chem. Soc., 17, 156, 10.1590/S0103-50532006000100022 Garcia, 2011, Mobile phone platform as portable chemical analyzer, Sens. Actuators B, 156, 350, 10.1016/j.snb.2011.04.045 Martinez-Olmos, 2011, Sensor array-based optical portable instrument for determination of pH, Sens. Actuators B, 156, 840, 10.1016/j.snb.2011.02.052 Ariza-Avidad, 2015, Inkjet-printed disposable metal complexing indicator-displacement assay for sulphide determination in water, Anal. Chim. Acta, 872, 55, 10.1016/j.aca.2015.02.045 Poynton, 1997 Bishop, 2006 Suzuki, 2002, Ionophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis, Anal. Chem., 74, 5766, 10.1021/ac0259414 Abe, 2008, Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem., 80, 6928, 10.1021/ac800604v Schaefer, 2012 Smolander, 2002, Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts, Innov. Food Sci. Emerg. Technol., 3, 279, 10.1016/S1466-8564(02)00043-7 King, 2014, Optical detection strategies for centrifugal microfluidic platforms, J. Mod. Opt., 61, 85, 10.1080/09500340.2013.873496 Chang, 2013, An optical centrifugal-and-pneumatic controlled microfluidic system for sensing real-time biochemical reactions, Appl. Mech. Mater., 397–400, 1733, 10.4028/www.scientific.net/AMM.397-400.1733 Klasner, 2010, Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva, Anal. Bioanal. Chem., 397, 1821, 10.1007/s00216-010-3718-4 Lapresta-Fernandez, 2008, Scanometric potassium determination with ionophore-based disposable sensors, Sens. Actuators B, 134, 694, 10.1016/j.snb.2008.06.016 Pham, 2007, Quantitative image analysis of immunohistochemical stains using a CMYK color model, Diagn. Pathol., 2, 8, 10.1186/1746-1596-2-8 Ariza-Avidad, 2014, Printed disposable colorimetric array for metal ion discrimination, Anal. Chem., 86, 8634, 10.1021/ac501670f Poynton, 1997 B.E. Bayer, Color imaging array, US 3971065 (20-7-1976). Canon Components Inc, 2015 CMOS Sensor Inc 300-600 DPI Contact Image Sensor, http://www.csensor.com/M116_CIS.htm, (accessed 04 Feb 2015). Ohta, 2007 Sen, 2008, Low-cost colorimetric sensor for the quantitative detection of gaseous hydrogen sulfide, Sens. Actuators B, 134, 234, 10.1016/j.snb.2008.04.046 Kompany-Zareh, 2002, Simple method for colorimetric spot-test quantitative analysis of Fe(III) using a computer controlled hand-scanner, Anal. Chim. Acta, 471, 97, 10.1016/S0003-2670(02)00871-1 Cate, 2013, Simple, distance-based measurement for paper analytical devices, Lab Chip, 13, 2397, 10.1039/c3lc50072a Chen, 2015, Paper based platform for colorimetric sensing of dissolved NH3 and CO2, Biosens. Bioelectron., 10.1016/j.bios.2014.09.010 Ariza-Avidad, 2013, Feasibility of the use of disposable optical tongue based on neural networks for heavy metal identification and determination, Anal. Chim. Acta, 783, 56, 10.1016/j.aca.2013.04.035 Wong, 2014, Mobile app-based quantitative scanometric analysis, Anal. Chem., 86, 11966, 10.1021/ac5035727 Yotter, 2003, A review of photodetectors for sensing light-emitting reporters in biological systems, Sens. J. IEEE, 3, 288, 10.1109/JSEN.2003.814651 Spring, 2012 Hamamatsu, 2014 Holst, 2001, Luminescence lifetime imaging with transparent oxygen optodes, Sens. Actuators B, 74, 78, 10.1016/S0925-4005(00)00715-2 Litwiller, 2001 Filippini, 2005, ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique, Biosens. Bioelectron., 21, 266, 10.1016/j.bios.2004.09.033 Gaiao, 2006, Digital image-based titrations, Anal. Chim. Acta, 570, 283, 10.1016/j.aca.2006.04.048 Safavi, 2007, CCD camera full range pH sensor array, Talanta, 71, 498, 10.1016/j.talanta.2006.04.030 Hossain, 2009, Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples, Anal. Chem., 81, 9055, 10.1021/ac901714h Maleki, 2004, Single-step calibration, prediction and real samples data acquisition for artificial neural network using a CCD camera, Talanta, 64, 830, 10.1016/j.talanta.2004.02.041 Ninh, 2007, A bad-smell sensing network using gas detector tubes and mobile phone cameras, Sens. Actuators B, 125, 138, 10.1016/j.snb.2007.01.049 Michikawa, 2008, Visible genotype sensor array, Sensors, 8, 2722, 10.3390/s8042722 Filippini, 2004, LCD-aided computer screen photo-assisted technique for colorimetric assays evaluation, Sens. Actuators B, 103, 158, 10.1016/j.snb.2004.04.111 Filippini, 2005, Computer screen photo-assisted reflectance fingerprinting, Sens. Actuators B, 107, 580, 10.1016/j.snb.2004.11.036 Bakker, 2005, Enhancing classification capabilities of computer screen photo-assisted fluorescence fingerprinting, Sens. Actuators B, 110, 190, 10.1016/j.snb.2005.01.046 Filippini, 2005, Fingerprinting of fluorescent substances for diagnostic purposes using computer screen illumination, Sens. Actuators B, 106, 302, 10.1016/j.snb.2004.07.036 Lopez-Ruiz, 2012, Determination of O2 using colour sensing from image processing with mobile devices, Sens. Actuators B, 171–172, 938, 10.1016/j.snb.2012.06.007 Sakaue, 2009, Global oxygen detection in water using luminescent probe on anodized aluminum, Sensors (Basel), 9, 4151, 10.3390/s90604151 Rakow, 2010, Visual indicator for trace organic volatiles, Langmuir, 26, 3767, 10.1021/la903483q Jones, 2009, A portable liquor monitoring system using a PC-based chromatic technique, Meas. Sci. Technol., 20, 10.1088/0957-0233/20/7/075305 Iqbal, 2011, Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages, Int. J. Food Sci. Technol., 46, 2428, 10.1111/j.1365-2621.2011.02766.x Martinez, 2008, Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis, Anal. Chem., 80, 3699, 10.1021/ac800112r Lee, 2011, DNA detection using commercial mobile phones, Biosens. Bioelectron., 26, 4349, 10.1016/j.bios.2011.04.036 Wei, 2014, Detection and spatial mapping of mercury contamination in water samples using a smart-phone, ACS Nano, 8, 1121, 10.1021/nn406571t Delaney, 2011, Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Anal. Chem., 83, 1300, 10.1021/ac102392t Lu, 2009, Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone, Electrophoresis, 30, 579, 10.1002/elps.200800586 Salles, 2014, Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach, Anal. Methods, 6, 2047, 10.1039/C3AY41727A Preechaburana, 2014, Biosensing with cell phones, Trends Biotechnol., 32, 351, 10.1016/j.tibtech.2014.03.007 McMahon, 2007 Coffey, 2005, Direct-reading methods for workplace air monitoring, J. Chem. Health Saf., 17, 10, 10.1016/j.jchas.2009.08.003 Ligler, 2008, Perspective on optical biosensors and integrated sensor systems, Anal. Chem., 81, 519, 10.1021/ac8016289 2014 Capel-Cuevas, 2012, A compact optical instrument with artificial neural network for pH determination, Sensors (Basel), 12, 6746, 10.3390/s120506746 Tokhtuev, 2005 Yokota, 2007, An optical sensor for analysis of soil nutrients by using LED light sources, Meas. Sci. Technol., 18, 2197, 10.1088/0957-0233/18/7/052 Salmeron, 2012, Measuring the colour of virgin olive oils in a new colour scale using a low-cost portable electronic device, J. Food Eng., 111, 247, 10.1016/j.jfoodeng.2012.02.025 Lopez-Ruiz, 2015, Wearable system for monitoring of oxygen concentration in breath based on optical sensors, IEEE Sens. J., 15, 4039, 10.1109/JSEN.2015.2410789 Lopez-Ruiz, 2011, Handheld colorimeter for determination of heavy metal concentrations, J. Phys. Conf. Ser, 307 Kuswandi, 2014, A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness, Packag. Technol. Sci., 27, 69, 10.1002/pts.2016 Baldini, 2004, Pattern-based detection of different proteins using an array of fluorescent protein surface receptors, J. Am. Chem. Soc., 126, 5656, 10.1021/ja039562j Erenas, 2012, Use of digital reflection devices for measurement using hue-based optical sensors, Sens. Actuators B, 174, 10, 10.1016/j.snb.2012.07.100 Filippini, 2003, Computer screen as a programmable light source for visible absorption characterization of (bio)chemical assays, Chem. Commun., 240, 10.1039/b210677a Lee, 2011, A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader, Lab Chip, 11, 120, 10.1039/C0LC00209G Thom, 2014, Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone, RSC Adv., 4, 1334, 10.1039/C3RA44717K Yetisen, 2014, A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests, Sens. Actuators B, 196, 156, 10.1016/j.snb.2014.01.077 Wongwilai, 2010, Webcam camera as a detector for a simple lab-on-chip time based approach, Talanta, 81, 1137, 10.1016/j.talanta.2010.01.058 Ludwig, 2014, Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay, Anal. Bioanal. Chem., 406, 6857, 10.1007/s00216-014-7984-4 Niu, 2013, BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions, Anal. Chim. Acta, 775, 93, 10.1016/j.aca.2013.03.013 Curto, 2012, Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids, Sens. Actuators B, 171–172, 1327, 10.1016/j.snb.2012.06.048 Salinas, 2014, A chromogenic sensor array for boiled marinated turkey freshness monitoring, Sens. Actuators B, 190, 326, 10.1016/j.snb.2013.08.075 Coskun, 2013, A personalized food allergen testing platform on a cellphone, Lab Chip, 13, 636, 10.1039/C2LC41152K Zhu, 2011, Optofluidic fluorescent imaging cytometry on a cell phone, Anal. Chem., 83, 6641, 10.1021/ac201587a Erenas, 2011, A surface fit approach with a disposable optical tongue for alkaline ion analysis, Anal. Chim. Acta, 694, 128, 10.1016/j.aca.2011.03.043 Wei, 2013, Fluorescent imaging of single nanoparticles and viruses on a smart phone, ACS Nano, 7, 9147, 10.1021/nn4037706 Hradil, 2002, Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach, Meas. Sci. Technol., 13, 1552, 10.1088/0957-0233/13/10/307 Tohda, 2006, Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 1: design, fabrication, and data analysis, Anal. Sci., 22, 383, 10.2116/analsci.22.383 Minamisawa, 2008, Digital image analysis to standardize a photometric method in colorimetric quantification, Instrum. Sci. Technol., 36, 97, 10.1080/10739140701750086 Minamisawa, 2008, Digital image analysis to standardize a photometric method in colorimetric quantification, Instrum. Sci. Technol., 36, 97, 10.1080/10739140701750086 Oncescu, 2014, Cholesterol testing on a smartphone, Lab Chip, 14, 759, 10.1039/C3LC51194D Apyari, 2008, Using a digital camera and computer data processing for the determination of organic substances with diazotized polyurethane foams, J. Anal. Chem., 63, 530, 10.1134/S1061934808060038 Iqbal, 2010, Spectral fingerinting on a andard mobile phone, J. Sens., 2010 Shen, 2012, Point-of-care colorimetric detection with a smartphone, Lab Chip, 12, 4240, 10.1039/c2lc40741h Suner, 2007, Non-invasive determination of hemoglobin by digital photography of palpebral conjunctiva, J. Emerg. Med., 33, 105, 10.1016/j.jemermed.2007.02.011 Filippini, 2003, Microplate based biosensing with a computer screen aided technique, Biosens. Bioelectron., 19, 35, 10.1016/S0956-5663(03)00132-5 Abbaspour, 2011, A simple, fast and cost effective method for detection and determination of dopamine in bovine serum, Anal. Methods, 3, 1405, 10.1039/c1ay00003a Zamora, 2011, Quantitative colorimetric-imaging analysis of nickel in iron meteorites, Talanta, 83, 1575, 10.1016/j.talanta.2010.11.058 Vecchini, 1995, Quantitation of phospholipids on thin layer chromatographic plates using a desk-top scanner, Mol. Cell. Biochem., 145, 25, 10.1007/BF00925709 Bannur, 1999, Protein determination by Ponceau S using digital color image analysis of protein spots on nitrocellulose membranes, Anal. Biochem., 267, 382, 10.1006/abio.1998.3020 Mentele, 2012, Microfluidic paper-based analytical device for particulate metals, Anal. Chem., 84, 4474, 10.1021/ac300309c Soga, 2013, Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines, Anal. Chem., 85, 8973, 10.1021/ac402070z Geladi, 1996 Martinez, 2008, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. U.S.A., 105, 19606, 10.1073/pnas.0810903105 Basavaprasad, 2014, A comparative study on classification of image segmentation methods with a focus on graph based techniques, IJRET, 3, 310, 10.15623/ijret.2014.0315060 Murdock, 2013, Optimization of a paper-based ELISA for a human performance biomarker, Anal. Chem., 85, 11634, 10.1021/ac403040a Szeliski, 2011 Prats-Montalban, 2011, Multivariate image analysis: a review with applications, Chemom. Intell. Lab., 107, 1, 10.1016/j.chemolab.2011.03.002 Chang, 2012, Smartphone-based chemistry instrumentation: digitization of colorimetric measurements, Bull. Korean Chem. Soc., 33, 549, 10.5012/bkcs.2012.33.2.549 Choodum, 2011, Rapid and semi-quantitative presumptive tests for opiate drugs, Talanta, 86, 284, 10.1016/j.talanta.2011.09.015 Abbaspour, 2008, A simple and selective sensor for the determination of ascorbic acid in vitamin C tablets based on paptode, Anal. Sci., 24, 721, 10.2116/analsci.24.721 Souza, 2009, A sensor for acid concentration based on cellulose paper sheets modified with polyaniline nanoparticles, Macromol. Mater. Eng., 294, 739, 10.1002/mame.200900111 Schaefer, 2012 Sumriddetchkajorn, 2013, Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water, Sens. Actuators B, 182, 592, 10.1016/j.snb.2013.03.080 Zhang, 2007, Colorimetric sensor array for soft drink analysis, J. Agric. Food Chem., 55, 237, 10.1021/jf0624695 Carey, 2011, Rapid identification of bacteria with a disposable colorimetric sensing array, J. Am. Chem. Soc., 133, 7571, 10.1021/ja201634d Bonifacio, 2010, Towards the photonic nose: a novel platform for molecule and bacteria identification, Adv. Mater., 22, 1351, 10.1002/adma.200902763 Suslick, 2010, Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas, Anal. Chem., 82, 2067, 10.1021/ac902823w Zhang, 2006, Colorimetric sensor arrays for the analysis of beers: a feasibility STUDY, J. Agric. Food Chem., 54, 4925, 10.1021/jf060110a Lim, 2009, An optoelectronic nose for the detection of toxic gases, Nat. Chem., 1, 562, 10.1038/nchem.360 Capel-Cuevas, 2012, An expert system for full pH range prediction using a disposable optical sensor array, IEEE Sens. J, 12, 1197, 10.1109/JSEN.2011.2168815 Gokmen, 2006, Computer vision based analysis of potato chips -a tool for rapid detection of acrylamide level, Mol. Nutr. Food Res., 50, 805, 10.1002/mnfr.200500257 Alimelli, 2007, Direct quantitative evaluation of complex substances using computer screen photo-assisted technology: the case of red wine, Anal. Chim. Acta, 597, 103, 10.1016/j.aca.2007.06.033 Lyra, 2009, Digital image-based flame emission spectrometry, Talanta, 77, 1584, 10.1016/j.talanta.2008.09.057 Lyra, 2014, Determination of sodium and calcium in powder milk using digital image-based flame emission spectrometry, Anal. Methods, 6, 1044, 10.1039/C3AY41005F Lyra, 2011, Indirect determination of sodium diclofenac, sodium dipyrone and calcium gluconate in injection drugs using digital image-based (webcam) flame emission spectrometric method, Anal. Methods, 3, 1975, 10.1039/c1ay05197k Choodum, 2011, Digital image-based colourimetric tests for amphetamine and methylamphetamine, Drug Test. Anal., 3, 277, 10.1002/dta.263 Choodum, 2012, Rapid quantitative colourimetric tests for trinitrotoluene (TNT) in soil, Forensic Sci. Int., 222, 340, 10.1016/j.forsciint.2012.07.014 Soldat, 2009, Microscale colorimetric analysis using a desktop scanner and automated digital image analysis, J. Chem. Ed., 86, 617, 10.1021/ed086p617 Adel Ahmed, 2013, Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum, Biosens. Bioelectron., 49, 478, 10.1016/j.bios.2013.05.058 Abbaspour, 2012, End point detection of precipitation titration by scanometry method without using indicator, Anal. Methods, 4, 923, 10.1039/c2ay05492b Andrade, 2013, A digital image-based flow-batch analyzer for determining Al(III) and Cr(VI) in water, Microchem. J., 109, 106, 10.1016/j.microc.2012.03.029 Tanaka, 2006, Study of highly sensitive smell sensing system using gas detector tube combined with optical sensor, Sens. Actuators B, 119, 84, 10.1016/j.snb.2005.11.068 El Kaoutit, 2013, Sub-ppm quantification of Hg(II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone, Anal. Methods, 5, 54, 10.1039/C2AY26307F Feng, 2011, Colorimetric determination of copper(II) ions by filtration on sol-gel membrane doped with diphenylcarbazide, Talanta, 84, 913, 10.1016/j.talanta.2011.02.033 Lapresta-Fernandez, 2009, Multianalyte imaging in one-shot format sensors for natural waters, Anal. Chim. Acta, 636, 210, 10.1016/j.aca.2009.01.044 Abbaspour, 2010, Disposable sensor for quantitative determination of hydrazine in water and biological sample, Anal. Methods, 2, 349, 10.1039/b9ay00291j Ornatska, 2011, Paper bioassay based on ceria nanoparticles as colorimetric probes, Anal. Chem., 83, 4273, 10.1021/ac200697y Chen, 2014, Functional gold nanoparticles coupled with microporous membranes: a flow controlled assay for colorimetric visualization of proteins, Analyst, 139, 5977, 10.1039/C4AN01269K Mao, 2012, Microfluidic diagnostics for the developing world, Lab. Chip, 12, 1412, 10.1039/c2lc90022j Chun, 2014, Paper-based glucose biosensing system utilizing a smartphone as a signal reader, BioChip J., 8, 218, 10.1007/s13206-014-8308-7 Wutz, 2011, Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays, Microchim. Acta, 173, 1, 10.1007/s00604-011-0548-9 Yang, 2010, Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal enterotoxin B (SEB), Lab Chip, 10, 1011, 10.1039/b923996k Rakow, 2000, A colorimetric sensor array for odour visualization, Nature, 406, 710, 10.1038/35021028 Sen, 2000, Shape-selective discrimination of small organic molecules, J. Am. Chem. Soc., 122, 11565, 10.1021/ja000002j Dickinson, 1996, A chemical-detecting system based on a cross-reactive optical sensor array, Nature, 382, 697, 10.1038/382697a0 Stitzel, 2001, Array-to-array transfer of an artificial nose classifier, Anal. Chem., 73, 5266, 10.1021/ac010111w Capel-Cuevas, 2010, Full-range optical pH sensor based on imaging techniques, Anal. Chim. Acta, 681, 71, 10.1016/j.aca.2010.09.033 Capel-Cuevas, 2011, Full-range optical pH sensor array based on neural networks, Microchem. J., 97, 225, 10.1016/j.microc.2010.09.008 Vanderroost, 2014, Intelligent food packaging: the next generation, Trends Food Sci. Tech., 39, 47, 10.1016/j.tifs.2014.06.009 Morris, 2009, Bio-sensing textile based patch with integrated optical detection system for sweat monitoring, Sens. Actuators B, 139, 231, 10.1016/j.snb.2009.02.032 Dani, 2005, Estimation of chlorophyll in leaves using portable digital camera, Physiol. Mol. Biol. Plants, 11, 321 Suner, 2007, Digital imaging, spectroscopy, and liquid crystals in a hand-held, non-invasive device to determine hemoglobin concentration, J. Soc. Inf. Disp., 15, 399, 10.1889/1.2749326 Kompany-Zareh, 2004, Genetic algorithm-based method for selecting conditions in multivariate determination of povidone-iodine using hand scanner, Anal. Chim. Acta, 521, 231, 10.1016/j.aca.2004.05.067 Torres, 2011, A digital image-based method for determining of total acidity in red wines using acid-base titration without indicator, Talanta, 84, 601, 10.1016/j.talanta.2011.02.002 Bjorklund, 2008, Automatic optimization of experimental conditions for fast evaluation of diagnostic tests using ubiquitous instrumentation, Sens. Actuators B, 134, 199, 10.1016/j.snb.2008.04.037 Qian, 2014, A colorimetric indicator-displacement assay array for selective detection and identification of biological thiols, Anal. Bioanal. Chem., 406, 1903, 10.1007/s00216-013-7591-9 Shokrollahi, 2014, Determination of Mn2+ ion by solution scanometry as a new, simple and inexpensive method, Quim. Nova, 37, 1589 Palacios, 2007, Hydroxyquinolines with extended fluorophores: arrays for turn-on and ratiometric sensing of cations, Chem. Comm., 36, 3708, 10.1039/b705392d Kloth, 2009, Development of an open stand-alone platform for regenerable automated microarrays, Biosens. Bioelectron., 24, 2106, 10.1016/j.bios.2008.11.005 Barbosa, 2015, Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device, Biosens. Bioelectron., 70, 5, 10.1016/j.bios.2015.03.006 Vidal, 2011, Image analysis for maintenance of coating quality in nickel electroplating baths GÇô Real time control, Anal. Chim. Acta, 706, 1, 10.1016/j.aca.2011.08.007 Lima, 2013, A digital image-based micro-flow-batch analyzer, Microchem. J., 106, 238, 10.1016/j.microc.2012.07.010 Shokrollahi, 2012, CPE-paptode as a new technique for determination of dyes: application for determination of acid red 151, Anal. Methods, 4, 502, 10.1039/c2ay05643g Cai, 2013, A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract, J. Chem. Educ., 90, 232, 10.1021/ed300385j Mirasoli, 2013, Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes, Anal. Bioanal. Chem., 405, 1139, 10.1007/s00216-012-6573-7 Stich, 2009, Read-out of multiple optical chemical sensors by means of digital color cameras, Sens. Actuators A, 139, 204, 10.1016/j.snb.2008.12.036 Ding, 2011, Label-free ultrasensitive colorimetric detection of copper(II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips, J. Mater. Chem., 21, 13345, 10.1039/c1jm11851j Song, 2014, Visual detection of DNA on paper chips, Anal. Chem., 86, 1575, 10.1021/ac403196b Yang, 2012, Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices, Lab Chip, 12, 274, 10.1039/C1LC20803A Maattanen, 2011, Paper-based planar reaction arrays for printed diagnostics, Sens. Actuators B, 160, 1404, 10.1016/j.snb.2011.09.086 Cassano, 2013, Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays, Microfluid. Nanofluid., 15, 173, 10.1007/s10404-013-1140-x Banerjee, 2013, Chemical synthesis and sensing in inexpensive thread-based microdevices, Sens. Actuators B, 186, 439, 10.1016/j.snb.2013.06.036 Yang, 2013, Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings, Clin. Chem., 59, 1506, 10.1373/clinchem.2013.204701 Cheng, 2010, Paper-based ELISA, Angew. Chem. Int. Ed., 49, 4771, 10.1002/anie.201001005 Lei, 2010, Colorimetric immunoassay chip based on gold nanoparticles and gold enhancement, Microfluid. Nanofluid., 8, 131, 10.1007/s10404-009-0490-x Maejima, 2013, Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices, RSC Adv., 3, 9258, 10.1039/c3ra40828k Lapresta-Fernandez, 2011, Evaluation of analytical reflection scanometry as an analytical tool, Anal. Methods, 3, 2644, 10.1039/c1ay05341h Nakamoto, 2009, Arimoto, humidity compensation by neural network for bad-smell sensing system using gas detector tube and built-in camera, IEEE Sens., 281 Jayawardane, 2014, Microfluidic paper-based Analytical device for the determination of nitrite and nitrate, Anal. Chem., 86, 7274, 10.1021/ac5013249 Wang, 2010, Photographing oxygen distribution, Angew. Chem. Int. Ed., 49, 4907, 10.1002/anie.201001305 Luckham, 2010, Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites, Analyst, 135, 2028, 10.1039/c0an00283f Badu-Tawiah, 2015, Polymerization-based signal amplification for paper-based immunoassays, Lab Chip, 15, 655, 10.1039/C4LC01239A Tohda, 2006, Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: color responses to pH, K+ and glucose, Anal. Sci., 22, 937, 10.2116/analsci.22.937 Liu, 2011, Three-dimensional paper microfluidic devices assembled using the principles of origami, J. Am. Chem. Soc., 133, 17564, 10.1021/ja2071779 Yang, 2008, Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food, Anal. Chem., 80, 8532, 10.1021/ac801418n Yang, 2009, Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal enterotoxin B (SEB) in food, Int. J. Food Microbiol., 133, 265, 10.1016/j.ijfoodmicro.2009.05.029 Davis, 2014, Dual-mode optical sensing of organic vapors and proteins with polydiacetylene (PDA)-embedded electrospun nanofibers, Langmuir, 30, 9616, 10.1021/la5017388 Salinas, 2014, A novel colorimetric sensor array for monitoring fresh pork sausages spoilage, Food control., 35, 166, 10.1016/j.foodcont.2013.06.043 Feng, 2010, A simple and highly sensitive colorimetric detection method for gaseous formaldehyde, J. Am. Chem. Soc., 132, 4046, 10.1021/ja910366p Huang, 2011, A novel technique for rapid evaluation of fish freshness using colorimetric sensor array, J. Food Eng., 105, 632, 10.1016/j.jfoodeng.2011.03.034 Feng, 2011, Discrimination of trace heavy-metal ions by filtration on sol-gel membrane arrays, Chem. Eur. J., 17, 1101, 10.1002/chem.201003133 Erenas, 2011, Disposable optical tongue for alkaline ion analysis, Sens. Actuators B, 156, 976, 10.1016/j.snb.2011.03.016 Cuellar, 2011, Minimization of sensing elements for full-range optical pH device formulation, New J. Chem., 35, 1042, 10.1039/c0nj00951b Musto, 2009, Colorimetric detection and identification of natural and artificial sweeteners, Anal. Chem., 81, 6526, 10.1021/ac901019g Lin, 2010, A colorimetric sensor array for detection of Triacetone triperoxide vapor, J. Am. Chem. Soc., 132, 15519, 10.1021/ja107419t Feng, 2010, A colorimetric sensor array for identification of toxic gases below permissible exposure limits, Chem. Comm., 46, 2037, 10.1039/b926848k Eaidkong, 2012, Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds, J. Mater. Chem., 22, 5970, 10.1039/c2jm16273c