Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling

Engineering Fracture Mechanics - Tập 144 - Trang 101-117 - 2015
E.T. Ooi1, H. Man2, S. Natarajan3, C. Song2
1School of Science, Information Technology and Engineering, Federation University, Ballarat, VIC 3353, Australia
2School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
3Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Tài liệu tham khảo

Samet, 1984, The quadtree and related hierarchical data structures, ACM Comput Surveys, 16, 187, 10.1145/356924.356930 Samet, 1988, Hierarchical data structures and algorithms for computer graphics, i. fundamentals, IEEE Comput Graph Appl, 8, 48, 10.1109/38.513 Samet, 1988, Hierarchical data structures and algorithms for computer graphics, ii. applications, IEEE Comput Graph Appl, 8, 59, 10.1109/38.7750 Samet, 1982, Neighbour finding techniques for images represented by quadtrees, Comput Graph Image Process, 18, 37, 10.1016/0146-664X(82)90098-3 Bielak, 2005, Parallel octree-based finite element method for large-scale earthquake ground motion simulation, Comput Modell Engng Sci, 10, 99 Liang, 2008, Flood inundation modelling with an adaptive quadtree grid shallow water equation solver, J Hydraulic Eng, 134, 117, 10.1061/(ASCE)0733-9429(2008)134:11(1603) Popinet, 2011, Quadtree-adaptive tsunami modelling, Ocean Dynam, 61, 1261, 10.1007/s10236-011-0438-z Yerry, 1983, A modified quadtree approach to finite element mesh generation, IEEE Comput Graph Appl, 3, 39, 10.1109/MCG.1983.262997 Freitas, 2013, A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains, Adv Engng Software, 59, 38, 10.1016/j.advengsoft.2013.03.005 Liang, 2010, Guaranteed-quality all-quadrilateral mesh generation with feature preservation, Comput Methods Appl Mechan Eng, 199, 2072, 10.1016/j.cma.2010.03.007 Atalay, 2012, Quadrilateral meshes with provable angle bounds, Engng Comput, 28, 31, 10.1007/s00366-011-0215-0 Krysl, 2003, Natural hierarchical refinement for finite element methods, Int J Numer Methods Eng, 56, 1109, 10.1002/nme.601 Ainsworth, 2007, Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes, Comput Methods Appl Mechan Eng, 196, 3493, 10.1016/j.cma.2006.10.020 Gupta, 1978, A finite element for transition from a fine to a coarse grid, Int J Numer Methods Eng, 12, 35, 10.1002/nme.1620120104 Lo, 2006, Adaptive refinement analysis using hybrid-stress transition elements, Comput Struct, 84, 2212, 10.1016/j.compstruc.2006.08.013 Sze, 2011, Transition finite element families for adaptive analysis of axisymmetric elasticity problems, Finite Elements Anal Des, 47, 360, 10.1016/j.finel.2010.11.002 Pian, 1964, Development of element stiffness matrices by assumed stress distribution, AIAA J: Am Instit Aeronaut Astronaut, 2, 1333, 10.2514/3.2546 Choi, 2004, Nonconforming variable-node axisymmetric solid element, J Engng Mechan, 130, 578, 10.1061/(ASCE)0733-9399(2004)130:5(578) Moes, 1999, A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J Fries, 2011, Hanging nodes and xfem, Int J Numer Methods Eng, 86, 404, 10.1002/nme.3024 Sukumar, 2004, Conforming polygonal finite elements, Int J Numer Methods Eng, 61, 2045, 10.1002/nme.1141 Tabarraei, 2005, Adaptive computations on conforming quadtree meshes, Finite Elements Anal Des, 41, 686, 10.1016/j.finel.2004.08.002 Folch JR, Perez J, Pineda M, Puche R. Quadtree meshes applied to the finite element computation of phase inductances in an induction machine. In: Wiak S, Krawczyk A, Dolezel I., editors, Intelligent computer techniques in applied electromagnetics. Studies in computational intelligence, vol. 119, p. 117–24. Tabarraei, 2008, Extended finite element method on polygon and quadtree meshes, Comput Methods Appl Mechan Eng, 197, 45, 10.1016/j.cma.2007.08.013 Song, 1997, The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics, Comput Methods Appl Mechan Eng, 147, 329, 10.1016/S0045-7825(97)00021-2 Song, 2010, A definition and evaluation procedure of generalised stress intensity factors at ccrack and multi-material wedges, Engng Fract Mechan, 77, 2316, 10.1016/j.engfracmech.2010.04.032 Becker, 2012, Computation of 3-d stress singularities for multiple crack and crack intersections by the scaled boundary finite element method, Int J Fract, 175, 13, 10.1007/s10704-012-9694-2 Ooi, 2012, Polygon scaled boundary finite elements for crack propagation modelling, Int J Numer Methods Eng, 91, 319, 10.1002/nme.4284 Natarajan, 2014, Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: laplace interpolants, strain smoothing and scaled boundary polygon formulation, Finite Elements Anal Des, 85, 101, 10.1016/j.finel.2014.03.006 Song, 2004, A matrix function solution for the scaled boundary finite-element equation in statics, Comput Methods Appl Mechan Eng, 193, 2325, 10.1016/j.cma.2004.01.017 Talischi, 2012, Polymesher: a general-purpose mesh generator for polygonal elements written in matlab, Struct Multidiscip Optim, 45, 309, 10.1007/s00158-011-0706-z Sukumar, 2013, Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons, Comput Methods Appl Mechan Eng, 263, 21, 10.1016/j.cma.2013.04.009 Sukumar, 2003, Modelling quasi-static crack growth with the extended finite element method. part i: Computer implementation, Int J Solids Struct, 40, 7513, 10.1016/j.ijsolstr.2003.08.002 Rashid, 1998, The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis, Comput Methods Appl Mechan Eng, 154, 133, 10.1016/S0045-7825(97)00068-6 Bouchard, 2000, Crack propagation modelling using an advanced remeshing technique, Comput Methods Appl Mechan Eng, 189, 723, 10.1016/S0045-7825(99)00324-2 Bittencourt, 1996, Quasi-automatic simulation of crack propagation for 2d lefm problems, Engng Fract Mechan, 55, 321, 10.1016/0013-7944(95)00247-2 Azocar, 2010, Automatic LEFM crack propagation method based on local lepp-delaunay mesh refinement, Adv Engng Software, 41, 111, 10.1016/j.advengsoft.2009.10.004 Bouchard, 2003, Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria, Comput Methods Appl Mechan Eng, 192, 3887, 10.1016/S0045-7825(03)00391-8 Khoei, 2008, Modelling crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique, Engng Fract Mechan, 75, 2921, 10.1016/j.engfracmech.2008.01.006