Vigilant measures of risk and the demand for contingent claims
Tài liệu tham khảo
Aliprantis, 2006
Amarante, M., Ghossoub, M., Phelps, E.S., 2012. Contracting for innovation under Knightian uncertainty. CIREQ Working Paper No. 18-2012, September.
Amarante, M., Ghossoub, M., Phelps, E.S., 2014. Ambiguity on the insurer’s side: the demand for insurance. Mimeo.
Arrow, 1971
Carlier, 2003, Pareto efficient insurance contracts when the insurer’s cost function is discontinuous, Econom. Theory, 21, 871, 10.1007/s00199-002-0281-z
Carlier, 2005, Rearrangement inequalities in non-convex insurance models, J. Math. Econom., 41, 483, 10.1016/j.jmateco.2004.12.004
Carlier, 2006, Law invariant concave utility functions and optimization problems with monotonicity and comonotonicity constraints, Statist. Decisions, 24, 127
Carlier, 2011, Optimal demand for contingent claims when agents have law invariant utilities, Math. Finance, 21, 169
Carothers, 2000
Chong, 1971, vol. 28
Cohn, 1980
Dana, 2004, Market behavior when preferences are generated by second-order stochastic dominance, J. Math. Econom., 40, 619, 10.1016/j.jmateco.2003.05.001
Dana, 2005, A representation result for concave Schur concave functions, Math. Finance, 15, 613, 10.1111/j.1467-9965.2005.00253.x
Dana, R.A., Meilijson, I., 2003. Modelling agents’ preferences in complete markets by second order stochastic dominance. Mimeo.
Dana, 2007, Optimal risk sharing with background risk, J. Econom. Theory, 133, 152, 10.1016/j.jet.2005.10.002
Denneberg, 1994
Epperson, 1990, A class of monotone decreasing rearrangements, J. Math. Anal. Appl., 150, 224, 10.1016/0022-247X(90)90209-X
Gale, 1985, Incentive-compatible debt contracts: the one-period problem, Rev. Econom. Stud., 52, 647, 10.2307/2297737
Ghossoub, 2011
Ghossoub, M., 2013. Arow’s theorem of the deducible with heterogeneous beliefs. Mimeo.
Ghossoub, 2014, Equimeasurable rearrangements with capacities, Math. Oper. Res.
Goovaerts, 1984
Hardy, 1988
Huberman, 1983, Optimal insurance policy indemnity schedules, Bell J. Econ., 14, 415, 10.2307/3003643
Jouini, 2006, Law invariant risk measures have the Fatou property, 49, 10.1007/4-431-34342-3_4
Kaas, 2001
Luxemburg, 1967, Rearrangement invariant Banach function spaces, 83
Marinacci, 2004, Introduction to the mathematics of ambiguity, 46
Pap, 1995
Raviv, 1979, The design of an optimal insurance policy, Amer. Econ. Rev., 69, 84
Schachermayer, 2002, Optimal investment in incomplete financial markets
Schied, 2004, On the Neyman–Pearson problem for law-invariant risk measures and robust utility functionals, Ann. Appl. Probab., 14, 1398, 10.1214/105051604000000341
Schied, 2005, Optimal investments for robust utility functionals in complete market models, Math. Oper. Res., 30, 750, 10.1287/moor.1040.0138
Schied, 2007, Optimal investments for risk- and ambiguity-averse preferences: a duality approach, Finance Stoch., 11, 107, 10.1007/s00780-006-0024-2