Vigilant measures of risk and the demand for contingent claims

Insurance: Mathematics and Economics - Tập 61 - Trang 27-35 - 2015
Mario Ghossoub1
1Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

Tài liệu tham khảo

Aliprantis, 2006 Amarante, M., Ghossoub, M., Phelps, E.S., 2012. Contracting for innovation under Knightian uncertainty. CIREQ Working Paper No. 18-2012, September. Amarante, M., Ghossoub, M., Phelps, E.S., 2014. Ambiguity on the insurer’s side: the demand for insurance. Mimeo. Arrow, 1971 Carlier, 2003, Pareto efficient insurance contracts when the insurer’s cost function is discontinuous, Econom. Theory, 21, 871, 10.1007/s00199-002-0281-z Carlier, 2005, Rearrangement inequalities in non-convex insurance models, J. Math. Econom., 41, 483, 10.1016/j.jmateco.2004.12.004 Carlier, 2006, Law invariant concave utility functions and optimization problems with monotonicity and comonotonicity constraints, Statist. Decisions, 24, 127 Carlier, 2011, Optimal demand for contingent claims when agents have law invariant utilities, Math. Finance, 21, 169 Carothers, 2000 Chong, 1971, vol. 28 Cohn, 1980 Dana, 2004, Market behavior when preferences are generated by second-order stochastic dominance, J. Math. Econom., 40, 619, 10.1016/j.jmateco.2003.05.001 Dana, 2005, A representation result for concave Schur concave functions, Math. Finance, 15, 613, 10.1111/j.1467-9965.2005.00253.x Dana, R.A., Meilijson, I., 2003. Modelling agents’ preferences in complete markets by second order stochastic dominance. Mimeo. Dana, 2007, Optimal risk sharing with background risk, J. Econom. Theory, 133, 152, 10.1016/j.jet.2005.10.002 Denneberg, 1994 Epperson, 1990, A class of monotone decreasing rearrangements, J. Math. Anal. Appl., 150, 224, 10.1016/0022-247X(90)90209-X Gale, 1985, Incentive-compatible debt contracts: the one-period problem, Rev. Econom. Stud., 52, 647, 10.2307/2297737 Ghossoub, 2011 Ghossoub, M., 2013. Arow’s theorem of the deducible with heterogeneous beliefs. Mimeo. Ghossoub, 2014, Equimeasurable rearrangements with capacities, Math. Oper. Res. Goovaerts, 1984 Hardy, 1988 Huberman, 1983, Optimal insurance policy indemnity schedules, Bell J. Econ., 14, 415, 10.2307/3003643 Jouini, 2006, Law invariant risk measures have the Fatou property, 49, 10.1007/4-431-34342-3_4 Kaas, 2001 Luxemburg, 1967, Rearrangement invariant Banach function spaces, 83 Marinacci, 2004, Introduction to the mathematics of ambiguity, 46 Pap, 1995 Raviv, 1979, The design of an optimal insurance policy, Amer. Econ. Rev., 69, 84 Schachermayer, 2002, Optimal investment in incomplete financial markets Schied, 2004, On the Neyman–Pearson problem for law-invariant risk measures and robust utility functionals, Ann. Appl. Probab., 14, 1398, 10.1214/105051604000000341 Schied, 2005, Optimal investments for robust utility functionals in complete market models, Math. Oper. Res., 30, 750, 10.1287/moor.1040.0138 Schied, 2007, Optimal investments for risk- and ambiguity-averse preferences: a duality approach, Finance Stoch., 11, 107, 10.1007/s00780-006-0024-2