Transition of granular flow patterns in a conical hopper based on superquadric DEM simulations

Granular Matter - Tập 22 Số 4 - 2020
Siqiang Wang1, Ying Yan2, Shunying Ji1
1State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
2School of Civil Engineering, Dalian Jiaotong University, Dalian 116028, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cundall, P.A., Strack, O.D.L.: A Discrete numerical mode for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

Zhao, B., An, X., Zhao, H., Shen, L., Sun, X., Zhou, Z.: DEM simulation of the local ordering of tetrahedral granular matter. Soft Matter 15(10), 2260–2268 (2019). https://doi.org/10.1039/c8sm02166j

Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K.S., Wilkinson, S.: The influence of particle elongations on direct shear behaviour of granular materials using DEM. Granul. Matter 21, 86 (2019). https://doi.org/10.1007/s10035-019-0947-x

Li, Y., Ji, S.: A geometric algorithm based on the advancing front approach for sequential sphere packing. Granul. Matter 20, 59 (2018). https://doi.org/10.1007/s10035-018-0829-7

Zhao, Y., Yang, S., Zhang, L., Chew, J.W.: Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the Discrete Element Method. Powder Technol. 342, 356–370 (2019). https://doi.org/10.1016/j.powtec.2018.09.080

Yan, Y., Ji, S.: Energy conservation in a granular shear flow and its quasi-solid–liquid transition. Part. Sci. Technol. 27(2), 126–138 (2009). https://doi.org/10.1080/02726350902775970

Vijayan, A., Annabattula, R.K.: Effect of particle flow dynamics on the fabric evolution in spherical granular assemblies filled under gravity. Powder Technol. 356, 909–919 (2019). https://doi.org/10.1016/j.powtec.2019.09.027

Gallego, E., Fuentes, J.M., Wiącek, J., Villar, J.R., Ayuga, F.: DEM analysis of the flow and friction of spherical particles in steel silos with corrugated walls. Powder Technol. 355, 425–437 (2019). https://doi.org/10.1016/j.powtec.2019.07.072

Xie, C., Ma, H., Zhao, Y.: Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction. Eng. Anal. Bound. Elem. 105, 207–220 (2019). https://doi.org/10.1016/j.enganabound.2019.04.013

Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.024

Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015). https://doi.org/10.1016/j.ces.2014.11.050

Kafashan, J., Wiącek, J., Abd Rahman, N., Gan, J.: Two-dimensional particle shapes modelling for DEM simulations in engineering: a review. Granul. Matter. 21, 80 (2019). https://doi.org/10.1007/s10035-019-0935-1

Li, C., Peng, Y., Zhang, P., Zhao, C.: The contact detection for heart-shaped particles. Powder Technol. 346, 85–96 (2019). https://doi.org/10.1016/j.powtec.2019.01.079

Zhao, S., Zhao, J.: A poly-superellipsoid‐based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43(13), 2147–2169 (2019). https://doi.org/10.1002/nag.2951

Li, L., Marteau, E., Andrade, J.E.: Capturing the inter-particle force distribution in granular material using LS-DEM. Granul. Matter 21, 43 (2019). https://doi.org/10.1007/s10035-019-0893-7

Khazeni, A., Mansourpour, Z.: Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol. 332, 265–278 (2018). https://doi.org/10.1016/j.powtec.2018. 03.030

Li, C.X., Zhou, Z.Y., Zou, R.P., Pinson, D., Shen, Y.S., Yu, A.B.: Experimental and numerical investigation on the packing of binary mixtures of spheres and ellipsoids. Powder Technol. 360, 1210–1219 (2020). https://doi.org/10.1016/j.powtec.2019.10.103

Feng, Y.T., Han, K., Owen, D.R.J.: A generic contact detection framework for cylindrical particles in discrete element modelling. Comput. Methods Appl. Mech. Eng. 315, 632–651 (2017). https://doi.org/10.1016/j.cma.2016.11.001

Feng, Y.T., Owen, D.R.J.: A 2D polygon/polygon contact model: algorithmic aspects. Eng. Comput. 21(2/3/4), 265–277 (2004). https://doi.org/10.1108/02644400410519785

Feng, Y.T., Han, K., Owen, D.R.J.: Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput. Methods Appl. Mech. Eng. 205–208, 169–177 (2012). https://doi.org/10.1016/j.cma.2011.02.010

Feng, Y.T., Tan, Y.: On Minkowski difference-based contact detection in discrete/discontinuous modelling of convex polygons/polyhedra. Eng. Comput. 37(1), 54–72 (2019). https://doi.org/10.1108/ec-03-2019-0124

Liu, L., Ji, S.: Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granul. Matter 21, 41 (2019). https://doi.org/10.1007/s10035-019-0896-4

Han, K., Feng, Y.T., Owen, D.R.J.: Polygon-based contact resolution for superquadrics. Int. J. Numer. Methods Eng. 66, 485–501 (2006). https://doi.org/10.1002/nme.1569

Lu, G., Third, J.R., Müller, C.R.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78(34), 226–235 (2012). https://doi.org/10.1016/j.ces.2012.05.041

Nie, J.-Y., Li, D.-Q., Cao, Z.-J., Zhou, B., Zhang, A.-J.: Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation. Powder Technol. 360, 209–220 (2020). https://doi.org/10.1016/j.powtec.2019.10.007

Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014). https://doi.org/10.1016/j.cma.2014.06.022

Cleary, P.W.: Effect of rock shape representation in DEM on flow and energy utilisation in a pilot SAG mill. Comput. Particle Mech. 6(3), 461–477 (2019). https://doi.org/10.1007/s40571-019-00226-3

Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9(2), 115–127 (1992). https://doi.org/10.1108/eb023852

Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016). https://doi.org/10.1016/j.powtec.2016.07.010

Tangri, H., Guo, Y., Curtis, J.S.: Hopper discharge of elongated particles of varying aspect ratio: Experiments and DEM simulations. Chem. Eng. Sci. X. 4, 100040 (2019). https://doi.org/10.1016/j.cesx.2019.100040

Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol. 278, 286–305 (2015). https://doi.org/10.1016/j.powtec.2015.02.046

You, Y., Zhao, Y.: Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 331, 179–191 (2018). https://doi.org/10.1016/j.powtec.2018. 03.017

Liu, S.D., Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol. 253, 70–79 (2014). https://doi.org/10.1016/j.powtec.2013.11.001

Höhner, D., Wirtz, S., Scherer, V.: Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 235, 614–627 (2013). https://doi.org/10.1016/j.powtec.2012.11.004

Gui, N., Yang, X., Tu, J., Jiang, S.: Numerical study of the motion behaviour of three-dimensional cubic particle in a thin drum. Adv. Powder Technol. 29(2), 426–437 (2018). https://doi.org/10.1016/j.apt.2017.11.033

Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

Wang, S., Fan, Y., Ji, S.: Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol. 339, 534–549 (2018). https://doi.org/10.1016/j.powtec.2018.08.026

AH, B.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981). https://doi.org/10.1109/MCG.1981.1673799

Peng, D., Hanley, K.J.: Contact detection between convex polyhedra and superquadrics in discrete element codes. Powder Technol. 356, 11–20 (2019). https://doi.org/10.1016/j.powtec.2019.07.082

Kildashti, K., Dong, K., Samali, B.: An accurate geometric contact force model for super-quadric particles. Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2019.112774

Gan, J., ·Yu, A.B.: DEM simulation of the packing of cylindrical particles. Granul. Matter 22, 22 (2020). https://doi.org/10.1007/s10035-019-0993-4

Ma, H., Zhao, Y.: Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation. Granul. Matter. 20, 41 (2018). https://doi.org/10.1007/s10035-018-0823-0

Fritzer, H.P.: Molecular symmetry with quaternions. Spectrochim. Acta Part A. 57, 1919–1930 (2001). https://doi.org/10.1016/S1386-1425(01)00477-2

Kosenko, I.I.: Integration of the equations of a rotational motion of a rigid body in quaternion algebra. The Euler case. J. Appl. Math. Mech. 62, 193–200 (1998). https://doi.org/10.1016/S0021-8928(98)00025-2

Miller, I.I.I.T.F., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., Martynaa, G.J.: Symplectic quaternion scheme for biophysical molecular dynam. J. Chem. Phys. 116, 8649–8659 (2002). https://doi.org/10.1063/1.1473654

Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). https://doi.org/10.1016/j.ces.2006.12.089

Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008). https://doi.org/10.1016/j.ces.2008.08.006

Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25(5), 432–442 (2008). https://doi.org/10.1108/02644400810881374

Houlsby, G.T.: Potential particles: a method for modelling non-circular particles in DEM. Comput. Geotech. 36(6), 953–959 (2009). https://doi.org/10.1016/j.compgeo.2009.03.001

Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Particle Mech. 4(1), 101–118 (2016). https://doi.org/10.1007/s40571-016-0131-6

Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., Ooi, J.Y.: DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018). https://doi.org/10.1016/j.powtec.2018.01.082

Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations, part II—experimental validation. Chem. Eng. Sci. 65, 5863–5871 (2010). https://doi.org/10.1016/j.ces.2010.08.007

Ge, L., Gui, N., Yang, X., Tu, J., Jiang, S.: Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers. Powder Technol. 355, 320–332 (2019). https://doi.org/10.1016/j.powtec.2019. 07.045

Govender, N., Wilke, D.N., Pizette, P., Abriak, N.-E.: A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Appl. Math. Comput. 319, 318–336 (2018). https://doi.org/10.1016/j.amc.2017.03.037

Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004). https://doi.org/10.1016/j.ces.2003. 10.008

Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Granular packings of elongated faceted particles deposited under gravity. J. Stat. Mech. Theory Exp. 2010(06), P06025 (2010). https://doi.org/10.1088/1742-5468/2010/06/p06025

Zhang, Y., Jia, F., Zeng, Y., Han, Y., Xiao, Y.: DEM study in the critical height of flow mechanism transition in a conical silo. Powder Technol. 331, 98–106 (2018). https://doi.org/10.1016/j.powtec.2018.03.024