Loading carbon nanotubes with viscous fluids and nanoparticles – a simpler approach

Applied Physics A Solids and Surfaces - Tập 89 - Trang 437-442 - 2007
S.B. Nadarajan1, P.D. Katsikis2, E.S. Papazoglou1
1School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, USA
2Department of Microbiology and Immunology, Drexel University College of Medicine, Drexel University, Philadelphia, USA

Tóm tắt

Carbon nanotubes have demonstrated exceptional properties enabling them to be considered for applications in drug delivery and other biologically important fields. The emphasis of the current drug delivery research with carbon nanotubes focuses on surface functionalization of the nanotubes and attachment of biomolecules, while leaving the inner void unmodified and mostly empty. Here, we report a simple, cost effective, and scalable method for filling and sealing carbon nanotubes with viscous solutions of biomaterials and nanoparticles (10 to 100 nm). The loading of nanotubes was achieved by optimal centrifugation in the presence of the viscous solution containing nanoparticles. This novel method was found to be effective for loading nanoparticles from 10 nm up to 40 nm in diameter, while increased sedimentation of particles larger than 40 nm resulted in reduced loading efficiency. Scanning electron microscopy and confocal laser scanning microscopy were used to analyze to confirm and image the loading of carbon nanotubes. This method could have immediate exciting applications in drug delivery especially for subcutaneous and slow release formulations.

Tài liệu tham khảo

A. Bianco, Expert Opin. Drug Deliv. 1, 57 (2004) G.A. Hughes, Nanomed. Nanotechnol. Biol. Med. 1, 22 (2005) K. Kostarelos, L. Lacerda, C.D. Partidos, M. Prato, A. Bianco, J. Drug Deliv. Sci. Technol. 15, 41 (2005) M. in het Panhuis, Chem. Biol. 10, 897 (2003) M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H.W. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley, Science 301, 1519 (2003) N.W. Shi Kam, M. O’Connell, J.A. Wisdom, H. Dai, Proc. Nat. Acad. Sci. 102, 11600 (2005) M.Z. Atashbar, B.E. Bejcek, S. Singamaneni, IEEE Sens. J. 6, 524 (2006) S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, Carbon 44, 1034 (2006) P. Kohli, C.R. Martin, J. Drug Deliv. Sci. Technol. 15, 49 (2005) S. Babu, P. Ndungu, J.-C. Bradley, M.P. Rossi, Y. Gogotsi, Microfluid. Nanofluid. 1, 284 (2005) M.P. Rossi, H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J.-C. Bradley, Nano Lett. 4, 989 (2004) B.M. Kim, S. Qian, H.H. Bau, Nano Lett. 5, 873 (2005) G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J.-C. Bradley, K.G. Kornev, Nano Lett. 5, 879 (2005) D. Mattia, Y. Gogotsi, Abstracts of Papers, FUEL 2006, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30 (2006) S. Supple, N. Quirke, Phys. Rev. Lett. 90, 214501/1 (2003) N. Naguib, H.H. Ye, Y. Gogotsi, Abstr. Pap. Am. Chem. Soc. 226, U535 (2003) C.V. Liew, L.W. Chan, A.L. Ching, P.W.S. Heng, Int. J. Pharmaceut. 309, 25 (2006) M.A. Cancela, E. Alvarez, R. Maceiras, Electr. J. Environ. Agric. Food Chem. 2, 380 (2003) P. Das Gupta, S. Basu, S.R. Palit, J. Sci. Indust. Res. 12, 294 (1953) Y.A. Morch, I. Donati, B.L. Strand, G. Skjak-Braek, Biomacromolecules 7, 1471 (2006) A. Nokhodchi, A. Tailor, Il Farmaco 59, 999 (2004) G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature 393, 346 (1998) M.F. Chaplin, C. Bucke, Enzyme Technology: Enzyme Preparation and Use (Cambridge University Press, Cambridge, 1990) E. Camponeschi, B. Florkowski, R. Vance, G. Garrett, H. Garmestani, R. Tannenbaum, Langmuir 22, 1858 (2006) B.Z. Tang, H. Xu, Macromolecules 32, 2569 (1999) S. Roger, D. Talbot, A. Bee, J. Magn. Magn. Mater. 305, 221 (2006) H.Y. Suzuki, K. Shinozaki, Y. Tanaka, H. Kuroki, J. Ceram. Soc. Japan 109, 248 (2001) M.C.P. Costa, F. Galembeck, Colloid Surf. 33, 175 (1988)