High retention of silver sulfide nanoparticles in natural soils

Journal of Hazardous Materials - Tập 378 - Trang 120735 - 2019
Min Li1,2, Ben K. Greenfield3, Luis M. Nunes4, Fei Dang1, Hai-long Liu1,2, Dong-mei Zhou1, Bin Yin5
1Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
4University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, Portugal
5State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China

Tài liệu tham khảo

Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein. J. Nanotech., 6, 1769, 10.3762/bjnano.6.181 Kaegi, 2011, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol., 45, 3902, 10.1021/es1041892 Kim, 2010, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environ. Sci. Technol., 44, 7509, 10.1021/es101565j Lombi, 2013, Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge, Environ. Pollut., 176, 193, 10.1016/j.envpol.2013.01.029 Pradas del Real, 2016, Fate of Ag-NPs in sewage sludge after application on agricultural soils, Environ. Sci. Technol., 50, 1759, 10.1021/acs.est.5b04550 Hashimoto, 2017, Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag, J. Hazard. Mater., 322, 318, 10.1016/j.jhazmat.2015.09.001 Li, 2017, The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions, Environ. Sci. Nano, 4, 919, 10.1039/C6EN00682E Sekine, 2015, Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films, Environ. Sci. Technol., 49, 897, 10.1021/es504229h Settimio, 2014, Fate and lability of silver in soils: effect of ageing, Environ. Pollut., 191, 151, 10.1016/j.envpol.2014.04.030 Devi, 2015, Sulfidation of silver nanoparticle reduces its toxicity in zebrafish, Aquat. Toxicol., 158, 149, 10.1016/j.aquatox.2014.11.007 Pradas del Real, 2017, Silver nanoparticles and wheat roots: a complex interplay, Environ. Sci. Technol., 51, 5774, 10.1021/acs.est.7b00422 Thalmann, 2015, Effect of ozone treatment on nano-sized silver sulfide in wastewater effluent, Environ. Sci. Technol., 49, 10911, 10.1021/acs.est.5b02194 Dang, 2019, Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique, Environ. Sci. Technol., 53, 3802, 10.1021/acs.est.8b06135 Kampe, 2018, Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber, Environ. Toxicol. Chem., 37, 1606, 10.1002/etc.4102 Kraas, 2017, Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora, Environ. Toxicol. Chem., 36, 3305, 10.1002/etc.3904 Starnes, 2016, Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles, Environ. Pollut., 213, 314, 10.1016/j.envpol.2016.01.020 Choi, 2009, Role of sulfide and ligand strength in controlling nanosilver toxicity, Water Res., 43, 1879, 10.1016/j.watres.2009.01.029 Levard, 2013, Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol., 47, 13440, 10.1021/es403527n Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405 Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360 Doolette, 2015, Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake, J. Hazard. Mater., 300, 788, 10.1016/j.jhazmat.2015.08.012 Hoppe, 2014, Retention of sterically and electrosterically stabilized silver nanoparticles in soils, Environ. Sci. Technol., 48, 12628, 10.1021/es5026189 Wang, 2018, Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties, J. Soil Sediment, 18, 2491, 10.1007/s11368-018-1918-2 Darlington, 2009, Nanoparticle characteristics affecting environmental fate and transport through soil, Environ. Toxicol. Chem., 28, 1191, 10.1897/08-341.1 Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027 Cornelis, 2013, Transport of silver nanoparticles in saturated columns of natural soils, Sci. Total Environ., 463, 120, 10.1016/j.scitotenv.2013.05.089 Kaegi, 2013, Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res., 47, 3866, 10.1016/j.watres.2012.11.060 Li, 2018, Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles, Environ. Sci. Nano, 5, 969, 10.1039/C7EN01173C Cornelis, 2010, A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils, Environ. Chem., 7, 298, 10.1071/EN10013 Sun, 2016, Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol., 50, 4701, 10.1021/acs.est.5b05828 Stegemeier, 2017, Effect of initial speciation of copper- and silver-based nanoparticles on their long-term fate and phytoavailability in freshwater wetland mesocosms, Environ. Sci. Technol., 51, 12114, 10.1021/acs.est.7b02972 Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Rahmatpour, 2017, Retention of silver nano-particles and silver ions in calcareous soils: influence of soil properties, J. Environ. Manage., 193, 136, 10.1016/j.jenvman.2017.01.062 Tibshirani, 1996, Regression shrinkage and selection via the Lasso, J. R. Statist. Soc. B, 58, 267 Burnham, 2002 Calcagno, 2010, Glmulti: an R package for easy automated model selection with (generalized) linear models, J. Stat. Softw., 34, 1, 10.18637/jss.v034.i12 Schielzeth, 2010, Simple means to improve the interpretability of regression coefficients, Methods Ecol. Evol., 1, 103, 10.1111/j.2041-210X.2010.00012.x C.T. R, 2017 Finch, 2016, Regularization methods for fitting linear models with small sample sizes: fitting the lasso estimator using R, Practical Assessment Research & Evaluation, 21, 1 Plassart, 2019, Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect, Sci. Rep., 9, 1, 10.1038/s41598-018-36867-2 Van Arkel, 2014, Identifying sampling locations for field-scale soil moisture estimation using K-means clustering, Water Resour. Res., 50, 7050, 10.1002/2013WR015015 Li, 2016, Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling, Environ. Sci. Technol., 50, 13342, 10.1021/acs.est.6b04042 Li, 2016, Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe(III), Environ. Sci. Technol., 50, 188, 10.1021/acs.est.5b03982 Navarro, 2014, Remobilisation of silver and silver sulphide nanoparticles in soils, Environ. Pollut., 193, 102, 10.1016/j.envpol.2014.06.008 Wang, 2015, Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic, Nanotoxicology, 9, 1041, 10.3109/17435390.2014.999139 Patiha, 2016, Firdaus, iop, the langmuir isotherm adsorption equation: the monolayer approach, IOP Conf. Ser.: Mater. Sci. Eng., 107, 10.1088/1757-899X/107/1/012067 Larue, 2018, Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem, Sci. Total Environ., 630, 609, 10.1016/j.scitotenv.2018.02.264 Thalmann, 2014, Sulfidation kinetics of silver nanoparticles reacted with metal sulfides, Environ. Sci. Technol., 48, 4885, 10.1021/es5003378 Jacobson, 2005, Environmental factors determining the trace-level sorption of silver and thallium to soils, Sci. Total Environ., 345, 191, 10.1016/j.scitotenv.2004.10.027 VandeVoort, 2012, Environmental chemistry of silver in soils: current and historic perspective, 59, 10.1016/B978-0-12-394275-3.00005-5 Judy, 2015, Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil, Environ. Pollut., 206, 256, 10.1016/j.envpol.2015.07.002 Schlich, 2018, Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants, Environ. Pollut., 1850, 10.1016/j.envpol.2018.07.082 Wang, 2014, Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol), J. Hydrol. (Amst), 519, 1677, 10.1016/j.jhydrol.2014.09.053 Doube, 1997, Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study, Soil Biol, Biochem., 29, 569