High retention of silver sulfide nanoparticles in natural soils
Tài liệu tham khảo
Vance, 2015, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein. J. Nanotech., 6, 1769, 10.3762/bjnano.6.181
Kaegi, 2011, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol., 45, 3902, 10.1021/es1041892
Kim, 2010, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environ. Sci. Technol., 44, 7509, 10.1021/es101565j
Lombi, 2013, Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge, Environ. Pollut., 176, 193, 10.1016/j.envpol.2013.01.029
Pradas del Real, 2016, Fate of Ag-NPs in sewage sludge after application on agricultural soils, Environ. Sci. Technol., 50, 1759, 10.1021/acs.est.5b04550
Hashimoto, 2017, Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag, J. Hazard. Mater., 322, 318, 10.1016/j.jhazmat.2015.09.001
Li, 2017, The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions, Environ. Sci. Nano, 4, 919, 10.1039/C6EN00682E
Sekine, 2015, Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films, Environ. Sci. Technol., 49, 897, 10.1021/es504229h
Settimio, 2014, Fate and lability of silver in soils: effect of ageing, Environ. Pollut., 191, 151, 10.1016/j.envpol.2014.04.030
Devi, 2015, Sulfidation of silver nanoparticle reduces its toxicity in zebrafish, Aquat. Toxicol., 158, 149, 10.1016/j.aquatox.2014.11.007
Pradas del Real, 2017, Silver nanoparticles and wheat roots: a complex interplay, Environ. Sci. Technol., 51, 5774, 10.1021/acs.est.7b00422
Thalmann, 2015, Effect of ozone treatment on nano-sized silver sulfide in wastewater effluent, Environ. Sci. Technol., 49, 10911, 10.1021/acs.est.5b02194
Dang, 2019, Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique, Environ. Sci. Technol., 53, 3802, 10.1021/acs.est.8b06135
Kampe, 2018, Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber, Environ. Toxicol. Chem., 37, 1606, 10.1002/etc.4102
Kraas, 2017, Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora, Environ. Toxicol. Chem., 36, 3305, 10.1002/etc.3904
Starnes, 2016, Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles, Environ. Pollut., 213, 314, 10.1016/j.envpol.2016.01.020
Choi, 2009, Role of sulfide and ligand strength in controlling nanosilver toxicity, Water Res., 43, 1879, 10.1016/j.watres.2009.01.029
Levard, 2013, Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol., 47, 13440, 10.1021/es403527n
Levard, 2012, Environmental transformations of silver nanoparticles: impact on stability and toxicity, Environ. Sci. Technol., 46, 6900, 10.1021/es2037405
Cornelis, 2012, Retention and dissolution of engineered silver nanoparticles in natural soils, Soil Sci. Soc. Am. J., 76, 891, 10.2136/sssaj2011.0360
Doolette, 2015, Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake, J. Hazard. Mater., 300, 788, 10.1016/j.jhazmat.2015.08.012
Hoppe, 2014, Retention of sterically and electrosterically stabilized silver nanoparticles in soils, Environ. Sci. Technol., 48, 12628, 10.1021/es5026189
Wang, 2018, Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties, J. Soil Sediment, 18, 2491, 10.1007/s11368-018-1918-2
Darlington, 2009, Nanoparticle characteristics affecting environmental fate and transport through soil, Environ. Toxicol. Chem., 28, 1191, 10.1897/08-341.1
Whitley, 2013, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment, Environ. Pollut., 182, 141, 10.1016/j.envpol.2013.06.027
Cornelis, 2013, Transport of silver nanoparticles in saturated columns of natural soils, Sci. Total Environ., 463, 120, 10.1016/j.scitotenv.2013.05.089
Kaegi, 2013, Fate and transformation of silver nanoparticles in urban wastewater systems, Water Res., 47, 3866, 10.1016/j.watres.2012.11.060
Li, 2018, Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles, Environ. Sci. Nano, 5, 969, 10.1039/C7EN01173C
Cornelis, 2010, A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils, Environ. Chem., 7, 298, 10.1071/EN10013
Sun, 2016, Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol., 50, 4701, 10.1021/acs.est.5b05828
Stegemeier, 2017, Effect of initial speciation of copper- and silver-based nanoparticles on their long-term fate and phytoavailability in freshwater wetland mesocosms, Environ. Sci. Technol., 51, 12114, 10.1021/acs.est.7b02972
Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719
Rahmatpour, 2017, Retention of silver nano-particles and silver ions in calcareous soils: influence of soil properties, J. Environ. Manage., 193, 136, 10.1016/j.jenvman.2017.01.062
Tibshirani, 1996, Regression shrinkage and selection via the Lasso, J. R. Statist. Soc. B, 58, 267
Burnham, 2002
Calcagno, 2010, Glmulti: an R package for easy automated model selection with (generalized) linear models, J. Stat. Softw., 34, 1, 10.18637/jss.v034.i12
Schielzeth, 2010, Simple means to improve the interpretability of regression coefficients, Methods Ecol. Evol., 1, 103, 10.1111/j.2041-210X.2010.00012.x
C.T. R, 2017
Finch, 2016, Regularization methods for fitting linear models with small sample sizes: fitting the lasso estimator using R, Practical Assessment Research & Evaluation, 21, 1
Plassart, 2019, Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect, Sci. Rep., 9, 1, 10.1038/s41598-018-36867-2
Van Arkel, 2014, Identifying sampling locations for field-scale soil moisture estimation using K-means clustering, Water Resour. Res., 50, 7050, 10.1002/2013WR015015
Li, 2016, Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling, Environ. Sci. Technol., 50, 13342, 10.1021/acs.est.6b04042
Li, 2016, Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe(III), Environ. Sci. Technol., 50, 188, 10.1021/acs.est.5b03982
Navarro, 2014, Remobilisation of silver and silver sulphide nanoparticles in soils, Environ. Pollut., 193, 102, 10.1016/j.envpol.2014.06.008
Wang, 2015, Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic, Nanotoxicology, 9, 1041, 10.3109/17435390.2014.999139
Patiha, 2016, Firdaus, iop, the langmuir isotherm adsorption equation: the monolayer approach, IOP Conf. Ser.: Mater. Sci. Eng., 107, 10.1088/1757-899X/107/1/012067
Larue, 2018, Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem, Sci. Total Environ., 630, 609, 10.1016/j.scitotenv.2018.02.264
Thalmann, 2014, Sulfidation kinetics of silver nanoparticles reacted with metal sulfides, Environ. Sci. Technol., 48, 4885, 10.1021/es5003378
Jacobson, 2005, Environmental factors determining the trace-level sorption of silver and thallium to soils, Sci. Total Environ., 345, 191, 10.1016/j.scitotenv.2004.10.027
VandeVoort, 2012, Environmental chemistry of silver in soils: current and historic perspective, 59, 10.1016/B978-0-12-394275-3.00005-5
Judy, 2015, Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil, Environ. Pollut., 206, 256, 10.1016/j.envpol.2015.07.002
Schlich, 2018, Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants, Environ. Pollut., 1850, 10.1016/j.envpol.2018.07.082
Wang, 2014, Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol), J. Hydrol. (Amst), 519, 1677, 10.1016/j.jhydrol.2014.09.053
Doube, 1997, Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study, Soil Biol, Biochem., 29, 569