Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China

Springer Science and Business Media LLC - Tập 28 Số 10 - Trang 2953-2966 - 2014
Jian Tang1, Xinan Yin1, Pan Yang1, Zhifeng Yang1
1Beijing Normal University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamson P (2001) The potential impacts of hydropower developments in Yunnan on the hydrology of the lower Mekong. Int Water Power Dam Constr 53:16–21

Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

Bao ZX, Zhang JY, Wang GQ et al (2012) Attribution for decreasing streamflow of the Haihe River Basin, northern China: climate variability or human activities? J Hydrol 460–461:117–129

Barker R, Molle F (2004) Evolution of irrigation in south and Southeast Asia. Comprehensive Assessment Research Report 5. Comprehensive Assessment Secretariat, Colombo Sri Lanka

Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in Indian Himalayas-a case study of Uttarakhand region. Water Resour Manag 22(10):1325–1346

Campbell IC (2007) Perceptions, data, and river management: lessons from the Mekong River. Water Resour Res 43: doi: 10.1029/2006WR005130

Chen LH, He DM (2000) The ecological impacts of hydropower cascade development in Lancang-Mekong River. Acta Geograph Sin 55(5):577–586 (In Chinese)

Cogels O (2007) Mekong hydropower development is good. < http://www.greengrants.org.cn/read.php?id=1353 >

Demirel MC, Venancio A, Kahya E (2009) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv Eng Softw 40(7):467–473

Fu GB, Chen SL, Liu CM et al (2004) Hydro-climatic trends of the Yellow River basin for the last 50 years. Clim Change 65:149–178

Goh E (2004) China in the Mekong River Basin: the regional security implications of resource development on the Lancang Jiang. Institute of Defence and Strategic Studies Working Paper No. 69, July 2004

Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363

Hao XM, Chen YN, Xu CC et al (2008) Impacts of climate change and human activities on the surfaces runoff in the Tarim River Basin over the last fifty years. Water Resour Manag 22:1159–1171

He DM, Feng Y, Gan S et al (2006) Transboundary hydrological effects of hydropower dam construction on the Lancang River. Chin Sci Bull 51(Supp):16–24

Jacobs JW (2002) The Mekong River Commission: transboundary water resources planning and regional security. Geogr J 168(4):354–364

Jiang SH, Ren LL, Yong B et al (2011) Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. Hydrol Process 25(16):2492–2505

Kendall M (1975) Rank correlation methods. Charles Griffin, London

Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5):532–539

Kummu M, Varis O (2007) Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 85:275–293

Li SJ, He DM (2008) Water level response to hydropower development in the Upper Mekong River. AMBIO 37(3):170–176

Liu DD, Chen XH, Lian YQ et al (2010) Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China. Hydrol Process 24:1487–1495

Mann H (1945) Non-parametric tests against trend. Econometrica 13:245–259

Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

Naik PK, Jay DA (2005) Estimation of Columbia River virgin flow: 1879 to 1928. Hydrol Process 19:1807–1824

Pahl-Wostl C (2007) Transitions towards adaptive management of water facing climate and global change. Water Resour Manag 21(1):49–62

Ramanathan V, Crutzen PJ, Kiehl JT et al (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

Räsänen TA, Koponen J, Lauri H et al (2012) Downstream hydrological impacts of hydropower development in the Upper Mekong Basin. Water Resour Manag 26(12):3495–3513

Refsgaard JC (1987) A methodology for distinguishing between the effects of human influence and climate variability on the hydrologic cycle. In: Proceedings of the Vancouver Symposium ‘The Influence of Climate Change Variability on the Hydrologic Regime and Water Resources’, IAHS, Publ. No. 168, Vancouver, and August 1987 pp. 557–570

Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann-Kendall and spearman’s rho tests in arid regions of Iran. Water Resour Manag 26:211–224

Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1084

Vörösmarty CJ, Green P, Salisbury J et al (2000) Global water resources: vulnerability from climate changes and population growth. Science 289:284–288

Wang WG, Shao QX, Yang T et al (2013) Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe River basin, China. Hydrol Process 27(8):1158–1174

Xue Z, Liu JP, Ge Q (2011) Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: connection to damming, monsoon, and ENSO. Earth Surf Proc Land 36:296–308

Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218

Zadeh MR, Amin S, Khalili D et al (2010) Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour Manag 24(11):2673–2688

Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214(1–4):32–48

Zhang AJ, Zhang C, Fu GB et al (2012) Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, northeast China. Water Resour Manag 26(8):2199–2217

Zhao QH, Liu SL, Deng L et al (2013) Evaluating the influences of the Manwan dam and climate variability on the hydrology of the Lancang-Mekong River, Yunnan Province, Southwest China. J Hydrol Eng 18(10):1322–1330

Zhong HP, Wang JS (2010) Impacts from hydropower development of main stream on runoff of Lancangjiang River. Water Resour Hydropower Eng 41(12):72–74 (In Chinese)