Order Isomorphisms of Operator Intervals in von Neumann Algebras

Springer Science and Business Media LLC - Tập 91 - Trang 1-26 - 2019
Michiya Mori1
1Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo, Japan

Tóm tắt

We give a complete description of order isomorphisms between operator intervals in general von Neumann algebras. For the description, we use Jordan $$^*$$ -isomorphisms and locally measurable operators. Our results generalize several works by L. Molnár and P. Šemrl on type I factors.

Tài liệu tham khảo

Acta Sci. Math. (Szeged) 84(1–2) (2018) Araki, H.: An application of Dye’s theorem on projection lattices to orthogonally decomposable isomorphisms. Pac. J. Math. 137(1), 1–13 (1989) Cabello Sánchez, F.: Homomorphisms on lattices of continuous functions. Positivity 12(2), 341–362 (2008) Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier (Grenoble) 24(4), 121–155 (1974) Dye, H.A.: On the geometry of projections in certain operator algebras. Ann. Math. (2) 61, 73–89 (1955) Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969) Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. (2) 56, 494–503 (1952) Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. II. Academic, Orlando (1986) Miura, Y.: Decomposition of an order isomorphism between matrix-ordered Hilbert spaces. Proc. Am. Math. Soc. 132(7), 1973–1977 (2004) Molnár, L.: Order-automorphisms of the set of bounded observables. J. Math. Phys. 42(12), 5904–5909 (2001) Molnár, L.: Preservers on Hilbert space effects. Linear Algebra Appl. 370, 287–300 (2003) Molnár, L.: Selected preserver problems on algebraic structures of linear operators and on function spaces. In: Lecture Notes in Mathematics, vol. 1895. Springer, Berlin (2007). https://doi.org/10.1007/3-540-39944-5 Plevnik, L., Šemrl, P.: Automorphisms of effect algebras. In: Bart, H., ter Horst, S., Ran, A., Woerdeman, H. (eds.) Operator Theory, Analysis and the State Space Approach, vol. 271, pp. 361–387. Birkhäuser, Cham (2018). https://doi.org/10.1007/978-3-030-04269-1_14 Šemrl, P.: Comparability preserving maps on Hilbert space effect algebras. Commun. Math. Phys. 313(2), 375–384 (2012) Šemrl, P.: Order isomorphisms of operator intervals. Integr. Equ. Oper. Theory 89(1), 1–42 (2017) Šemrl, P.: Groups of order automorphisms of operator intervals. Acta Sci. Math. (Szeged) 84(1–2), 125–136 (2018) Takesaki, M.: Theory of Operator Algebras, vol. I. Springer, New York (1979) Yeadon, F.J.: Convergence of measurable operators. Proc. Camb. Philos. Soc. 74, 257–268 (1973)