Comonadic Notions of Computation

Electronic Notes in Theoretical Computer Science - Tập 203 - Trang 263-284 - 2008
Tarmo Uustalu1
1Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn, Estonia

Tài liệu tham khảo

Abbott, 2005, Containers: constructing strictly positive types, Theor. Comput. Sci., 342, 3, 10.1016/j.tcs.2005.06.002 Aczel, 2003, Infinite trees and completely iterative theories: a coalgebraic view, Theor. Comput. Sci., 300, 1, 10.1016/S0304-3975(02)00728-4 Ashcroft, 1985 Benton, 1993, Linear lambda-calculus and categorical models revisited, 702, 61 Benton, 2002, Monads and effects, 2395, 42 Benton, 2003, Traced premonoidal categories, Theor. Inform. and Appl., 37, 273, 10.1051/ita:2003020 Bierman, 2000, On an intuitionistic modal logic, Studia Logica, 65, 383, 10.1023/A:1005291931660 Brookes, 1992, Computational comonads and intensional semantics, 177, 1 Brookes, S. and K. Van Stone, “Monads and comonads in intensional semantics,” Techn. Report CMU-CS-93-140, School of Comput. Sci., Carnegie Mellon Univ., 1993, 41 pp Colaço, 2004, Towards a higher-order synchronous data-flow language, 230 Eilenberg, 1966, Closed categories, 421 Erkök, 2000, Recursive monadic bindings, 174 Halbwachs, 1991, The synchronous data flow programming language LUSTRE, Proc. of IEEE, 79, 1305, 10.1109/5.97300 Hasegawa, 2003, The uniformity principle on traced monoidal categories, Electron. Notes in Comput. Sci., 69, 137, 10.1016/S1571-0661(04)80563-2 Heunen, 2006, Arrows, like monads, are monoids, Electron. Notes in Theor. Comput. Sci., 158, 219, 10.1016/j.entcs.2006.04.012 Huet, 1997, The zipper, J. of Funct. Program., 7, 549, 10.1017/S0956796897002864 Hughes, 2000, Generalising monads to arrows, Sci. of Comput. Program., 37, 67, 10.1016/S0167-6423(99)00023-4 Hyland, 2006, Combining effects: sum and tensor, Theor. Comput. Sci., 357, 70, 10.1016/j.tcs.2006.03.013 Jacobs, B. and I. Hasuo, Freyd is Kleisli, for arrows, in: C. McBride, T. Uustalu, eds., “Proc. of Wksh. on Mathematically Structured Functional Programming, MSFP 2006,” Electron. Wkshs. in Computing, BCS, 2006, 13 pp Kieburtz, R.B., Codata and comonads in Haskell, unpublished manuscript, 1999 Knuth, 1968, Semantics of context-free languages, Math. Syst. Theory, 2, 127, 10.1007/BF01692511 Lewis, 2000, Implicit parameters: dynamic scoping with static types, 108 McBride, C., The derivative of a regular type is the type of its one-hole contexts, manuscript, 2000 Milius, 2005, Completely iterative algebras and completely iterative monads, Inform. and Comput., 196, 1, 10.1016/j.ic.2004.05.003 Moggi, 1991, Notions of computation and monads, Inform. and Comput., 93, 55, 10.1016/0890-5401(91)90052-4 Moggi, 2004, An abstract monadic semantics for value recursion, Theor. Inform. and Appl., 38, 375, 10.1051/ita:2004018 Plotkin, 2001, Semantics for algebraic operations, Electron. Notes in Theor. Comput. Sci., 45, 332, 10.1016/S1571-0661(04)80970-8 Plotkin, 2004, Computational effects and operations: an overview, Electron. Notes in Theor. Comput. Sci., 73, 149, 10.1016/j.entcs.2004.08.008 Pouzet, M., Lucid Synchrone, version 3: tutorial and reference manual, unpublished manuscript, 2006 Power, 1997, Premonoidal categories and notions of computation, Math. Structures in Comput. Sci., 7, 453, 10.1017/S0960129597002375 Power, 2004, From comodels to coalgebras: state and arrays, Electron. Notes in Theor. Comput. Sci., 106, 297, 10.1016/j.entcs.2004.02.041 Power, 2002, Combining a monad and a comonad, Theor. Comput. Sci., 280, 137, 10.1016/S0304-3975(01)00024-X Uustalu, 2002, The dual of substitution is redecoration, 99 Uustalu, 2006, The essence of dataflow programming (full version), 4164, 135 Uustalu, 2007, Comonadic functional attribute evaluation, 145