Nutrient cycling in a mixed-species plantation of<i>Eucalyptus globulus</i>and<i>Acacia mearnsii</i>

Canadian Journal of Forest Research - Tập 35 Số 12 - Trang 2942-2950 - 2005
David I. Forrester, Jürgen Bauhus, Annette Cowie

Tóm tắt

A doubling of aboveground biomass production has been observed in mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman when compared with monocultures after 11 years of growth. This study examined to what extent increased nitrogen (N) availability and accelerated rates of nutrient cycling may contribute to increased growth in mixtures. Monocultures of E. globulus (E) and A. mearnsii (A) and mixtures of these species were planted in a species replacement series: 100% E, 75% E + 25% A, 50% E + 50% A, 25% E + 75% A, and 100% A. Litterfall mass increased with aboveground biomass production and was highest in 50:50 mixtures and lowest in monocultures. Owing to higher N concentrations of A. mearnsii litter, N contents of annual litterfall were at least twice as high in stands containing A. mearnsii (32-49 kg·ha–1·year–1) as in E. globulus monocultures (14 kg·ha–1·year–1). Stands with A. mearnsii also cycled higher quantities of phosphorus (P) in annual litterfall than E. globulus monocultures. This study demonstrated that mixing A. mearnsii with E. globulus increased the quantity and rates of N and P cycled through aboveground litterfall when compared with E. globulus monocultures. Thus, mixed-species plantations appear to be a useful silvicultural system to improve nutrition of eucalypts without fertilization.

Từ khóa


Tài liệu tham khảo

Adams M.A., 1986, Plant Soil, 92, 319, 10.1007/BF02372482

Attiwill P.M., 1993, New Phytol., 124, 561, 10.1111/j.1469-8137.1993.tb03847.x

Bauhus J., 2000, Can. J. For. Res., 30, 1886, 10.1139/x00-141

Bauhus J., 2004, Can. J. For. Res., 34, 686, 10.1139/x03-243

Bennett L.T., 1997, Aust. J. Bot., 45, 103, 10.1071/BT96057

Berg B., 2000, For. Ecol. Manage., 133, 13, 10.1016/S0378-1127(99)00294-7

Berg B., 1991, VII. Can. J. Bot., 69, 1449, 10.1139/b91-187

Binkley D., 1998, For. Ecol. Manage., 112, 79, 10.1016/S0378-1127(98)00331-4

Binkley D., 1992, For. Sci., 38, 393

Binkley D., 2000, For. Ecol. Manage., 128, 241, 10.1016/S0378-1127(99)00138-3

Bray R.H., 1945, Soil Sci., 59, 39, 10.1097/00010694-194501000-00006

Byard R., 1996, Agric. Ecosyst. Environ., 58, 145, 10.1016/0167-8809(96)01028-6

Forrester D.I., 2004, For. Ecol. Manage., 193, 81, 10.1016/j.foreco.2004.01.024

Frederick D.J., 1985, N.Z. J. For. Sci., 15, 142

Gartner T.B., 2004, Oikos, 104, 230, 10.1111/j.0030-1299.2004.12738.x

Giardina C.P., 1995, Can. J. For. Res., 25, 1652, 10.1139/x95-179

Guo L.B., 1999, Agric. Ecosyst. Environ., 73, 93, 10.1016/S0167-8809(99)00006-7

Guo L.B., 2001, Appl. Soil Ecol., 17, 229, 10.1016/S0929-1393(01)00134-2

Kaye J.P., 2000, Ecology, 81, 3267, 10.2307/177491

Khanna P.K., 1997, For. Ecol. Manage., 94, 105, 10.1016/S0378-1127(96)03971-0

Khanna P.K., 1998, Agrofor. Syst., 38, 99, 10.1023/A:1005952410569

Meentemeyer V., 1978, Ecology, 59, 465, 10.2307/1936576

Nagy L.A., 1982, Soil Biol. Biochem., 14, 233, 10.1016/0038-0717(82)90031-1

Olson J.S., 1963, Ecology, 44, 322, 10.2307/1932179

Parrotta J.A., 1999, For. Ecol. Manage., 124, 45, 10.1016/S0378-1127(99)00049-3

Pereira A.P., 1998, Pedobiologia, 42, 316, 10.1016/S0031-4056(24)00400-1

Raison R.J., 1986, Aust. J. Ecol., 11, 9, 10.1111/j.1442-9993.1986.tb00913.x

Resh S.C., 2002, Ecosystems, 5, 217, 10.1007/s10021-001-0067-3

Rothe A., 2001, Can. J. For. Res., 31, 1855, 10.1139/x01-120

Taylor B.R., 1991, Can. J. Bot., 69, 2242, 10.1139/b91-281

Toky O.P., 1993, Agric. Ecosyst. Environ., 45, 129, 10.1016/0167-8809(93)90064-V

Vitousek P.M., 1982, Am. Nat., 119, 553, 10.1086/283931

Wedderburn M.E., 1999, Soil Biol. Biochem., 31, 455, 10.1016/S0038-0717(98)00151-5