On pseudo-distance-regularity

Linear Algebra and Its Applications - Tập 323 - Trang 145-165 - 2001
M.A. Fiol1
1Departament de Matemàtica Aplicada i Telemàtica, Universitat Politècnica de Catalunya. Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain

Tài liệu tham khảo

N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, MA, 1974; second ed., 1993 Brouwer, 1989 Cvetković, 1985, Developments in the theory of graph spectra, Linear and Multilinear Algebra, 18, 153, 10.1080/03081088508817683 Cvetković, 1997 Fiol, 1999, Eigenvalue interlacing and weight parameters of graphs, Linear Algebra Appl., 290, 275, 10.1016/S0024-3795(98)10238-0 Fiol, 1997, From local adjacency polynomials to locally pseudo-distance-regular graphs, J. Combin. Theory Ser. B, 71, 162, 10.1006/jctb.1997.1778 Fiol, 1999, On the algebraic theory of pseudo-distance-regularity around a set, Linear Algebra Appl., 298, 115, 10.1016/S0024-3795(99)00154-8 Fiol, 1996, Locally pseudo-distance-regular graphs, J. Combin. Theory Ser. B, 68, 179, 10.1006/jctb.1996.0063 M.A. Fiol, E. Garriga, J.L.A.Yebra, Boundary graphs: the limit case of a spectral property, Discrete Mathematics, to appear E. Garriga, Contribució a la Teoria Espectral de Grafs: Problemes Mètrics i Distancia-Regularitat, (Catalan) Ph.D. Thesis, Universitat Politècnica de Catalunya, 1997 C.D. Godsil, Graphs, groups, and polytopes, in: D.A. Holton, J. Seberry (Eds.), Combinatorial Mathematics, Lecture Notes in Mathematics, vol. 686, Springer, Berlin, 1978, pp. 157–164 Godsil, 1988, Bounding the diameter of distance regular graphs, Combinatorica, 8, 333, 10.1007/BF02189090 C.D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993 Godsil, 1980, Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl., 30, 51, 10.1016/0024-3795(80)90180-9 P. Rowlinson, Linear algebra, in: Graph Connections, Oxford University Press, New York, 1997, pp. 86–99 G. Szegö, Orthogonal Polynomials, fourth ed., AMS, Providence, RI, 1975 Terwilliger, 1987, A characterization of P- and Q-polynomial association schemes, J. Combin. Theory Ser. A, 45, 8, 10.1016/0097-3165(87)90042-2 Terwilliger, 1992, The subconstituent algebra of an association scheme, part I, J. Algebraic. Combin., 1, 363, 10.1023/A:1022494701663