Determination of total chloride content in cement pastes with laser-induced breakdown spectroscopy (LIBS)
Tài liệu tham khảo
Mori, 2006, Applications of electron probe microanalyzer for measurement of cl concentration profile in concrete, J. Adv. Concr. Technol., 4, 369, 10.3151/jact.4.369
Dehghan, 2017, Application of X-ray microfluorescence for the determination of chloride diffusion coefficients in concrete chloride penetration experiments, Constr. Build. Mater., 148, 85, 10.1016/j.conbuildmat.2017.05.072
Bonta, 2016, Quantification of chloride in concrete samples using LA-ICP-MS, Cem. Concr. Res., 86, 78, 10.1016/j.cemconres.2016.05.002
Grousset, 2015, In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments, J. Anal. At. Spectrom., 30, 721, 10.1039/C4JA00370E
Schloemer, 1960, Über den Einsatz der RFA in der Zementchemie, Zement, Kalk, Gips, 11, 522
Richartz, 1971, Ausschalten von Fehlerquellen bei der Röntgenfluoreszenzanalyse, Zement, Kalk, Gips, 2, 72
Gould, 1974, X-ray spectrometric analysis of chlorine in concrete, X-Ray Spectrom., 3, 170, 10.1002/xrs.1300030410
Lukas, 1981, Die Bestimmung von Chlorid im Beton mit Röntgenfluoreszenzanalyse und ihre Genauigkeit, Zement und Beton, 26, 180
Hubbard, 1985, Pulverized-fuel ash for concrete - compositional characterization of United-Kingdom PFA, Cem. Concr. Res., 15, 185, 10.1016/0008-8846(85)90025-0
Dhir, 1990, Determination of total and soluble chlorides in concrete, Cem. Concr. Res., 20, 579, 10.1016/0008-8846(90)90100-C
2013
Sallé, 2004, Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements, Spectrochim. Acta B At. Spectrosc., 59, 1413, 10.1016/j.sab.2004.06.006
Rauschenbach, 2010, Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification, Spectrochim. Acta B At. Spectrosc., 65, 758, 10.1016/j.sab.2010.03.018
Rapin, 2017, Quantification of water content by laser induced breakdown spectroscopy on Mars, Spectrochim. Acta B At. Spectrosc., 130, 82, 10.1016/j.sab.2017.02.007
Taffe, 2004, Einsatz der Laser-Induzierten Breakdown Spektroskopie (LIBS) im Bauwesen, Beton- und Stahlbetonbau, 99, 761, 10.1002/best.200490199
Wilsch, 2005, Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy, Constr. Build. Mater., 19, 724, 10.1016/j.conbuildmat.2005.06.001
Weritz, 2007, Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region, Spectrochim. Acta B At. Spectrosc., 62, 1504, 10.1016/j.sab.2007.10.017
Gehlen, 2009, Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range, Spectrochim. Acta B At. Spectrosc., 64, 1135, 10.1016/j.sab.2009.07.021
Eichler, 2010, Investigations on the chloride migration in consequence of cathodic polarisation, Mater. Corros., 61, 512, 10.1002/maco.200905560
Šavija, 2014, Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (LIBS) study, J. Adv. Concr. Technol., 12, 425, 10.3151/jact.12.425
Millar, 2015, Laser induced breakdown spectroscopy (LIBS) im Bauwesen - automatisierte Baustoffanalyse, Beton- und Stahlbetonbau, 110, 501, 10.1002/best.201500030
Wilsch, 2015
Gottlieb, 2017, 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm, Spectrochim. Acta B At. Spectrosc., 134, 58, 10.1016/j.sab.2017.06.005
Gottlieb, 2017, Revealing hidden spectral information of chlorine and sulfur in data of a mobile laser-induced breakdown spectroscopy system using chemometrics, Spectrochim. Acta B At. Spectrosc., 132, 43, 10.1016/j.sab.2017.04.001
Millar, 2018, Chlorine determination in cement-bound materials with laser-induced breakdown spectroscopy (LIBS) – a review and validation, Spectrochim. Acta B At. Spectrosc., 147, 1, 10.1016/j.sab.2018.05.015
Sugiyama, 2010, Detection of chlorine with concentration of 0,18 kg/m3 in concrete by laser-induced breakdown spectroscopy, Appl. Opt., 49, 181, 10.1364/AO.49.00C181
Labutin, 2014, Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 99, 94, 10.1016/j.sab.2014.06.021
Eto, 2014, Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 101, 245, 10.1016/j.sab.2014.09.004
Omenetto, 2016
Silva, 2012, Application of LA-ICP-MS for meso-scale chloride profiling in concrete, Mater. Struct., 46, 1369, 10.1617/s11527-012-9979-y
Richartz, 1969, Die Bindung von Chlorid bei der Zementerhärtung, Zement, Kalk, Gips, 22, 447
Cremers, 2013
Asimellis, 2005, Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 60, 1132, 10.1016/j.sab.2005.05.035
Gornushkin, 2018, Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 147, 149, 10.1016/j.sab.2018.06.011
Taylor, 1997
Deutscher Ausschuss für Stahlbeton, 1989
2007
ASTM, 2006
2008
Gottlieb, 2018, Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 142, 74, 10.1016/j.sab.2018.02.004
Stanjek, 1987, Röntgenfluoreszenzanalytische Bestimmung des Chloridgehaltes von Beton - Eignung verschiedener Präparationsverfahren, Teil II, TIZ-Fachber., 111, 159
Berman, 1972, Determination of chloride in hardened Portland cement paste, mortar and concrete, J. Mater., 7, 330
Dorner, 1988, Photometrische Schnellbestimmung des Chloridgehaltes von Beton am Bauwerk, TIZ-Fachber., 112, 133
Dorner, 1987, Schnelle Bestimmung des Chloridgehaltes von Beton durch Direktpotentiometrie, TIZ-Fachber., 111, 329
Miller, 2009, On the importance of using known reference materials for the calibration of analytical methods - with particular reference to chloride and sodium content in hardened concrete, Mater. Corros., 60, 602, 10.1002/maco.200905297