Curcumin Nanoparticles Attenuate Neurochemical and Neurobehavioral Deficits in Experimental Model of Huntington’s Disease
Tóm tắt
Till date, an exact causative pathway responsible for neurodegeneration in Huntington’s disease (HD) remains elusive; however, mitochondrial dysfunction appears to play an important role in HD pathogenesis. Therefore, strategies to attenuate mitochondrial impairments could provide a potential therapeutic intervention. In the present study, we used curcumin encapsulated solid lipid nanoparticles (C-SLNs) to ameliorate 3-nitropropionic acid (3-NP)-induced HD in rats. Results of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and succinate dehydrogenase (SDH) staining of striatum revealed a marked decrease in Complex II activity. However, C-SLN-treated animals showed significant increase in the activity of mitochondrial complexes and cytochrome levels. C-SLNs also restored the glutathione levels and superoxide dismutase activity. Moreover, significant reduction in mitochondrial swelling, lipid peroxidation, protein carbonyls and reactive oxygen species was observed in rats treated with C-SLNs. Quantitative PCR and Western blot results revealed the activation of nuclear factor-erythroid 2 antioxidant pathway after C-SLNs administration in 3-NP-treated animals. In addition, C-SLN-treated rats showed significant improvement in neuromotor coordination when compared with 3-NP-treated rats. Thus, the results of this study suggest that C-SLNs administration might be a promising therapeutic intervention to ameliorate mitochondrial dysfunctions in HD.
Tài liệu tham khảo
Abu-Taweel, G. M., Ajarem, J. S., & Ahmad, M. (2013). Protective effect of curcumin on anxiety, learning behaviour, neuromuscular activities, brain neurotransmitters and oxidative stress enzymes in cadmium intoxicated mice. Journal of Behavioral and Brain Sciences, 3, 74–84.
Alexi, T., Hughes, P. E., Faull, R. L., & Williams, C. E. (1998). 3-Nitropropionic acid’s lethal triplet: Cooperative pathways of neurodegeneration. NeuroReport, 9(11), R57–R64.
Al-Omar, F. A., Nagi, M. N., Abdulgadir, M. M., Al Joni, K. S., & Al-Majed, A. A. (2006). Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus. Neurochemical Research, 31(5), 611–618.
Alston, T. A., Mela, L., & Bright, H. J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proceedings of the National Academy of Sciences, USA, 74(9), 3767–3771.
Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S., & Andersen, J. K. (2002). Glutathione, iron and Parkinson’s disease. Biochemical Pharmacology, 64(5–6), 1037–1048.
Bizat, N., Hermel, J. M., Boyer, F., Jacquard, C., Creminon, C., Ouary, S., et al. (2003). Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: Implications for Huntington’s disease. Journal of Neuroscience, 23(12), 5020–5030.
Bogdanov, M. B., Ferrante, R. J., Kuemmerle, S., Klivenyi, P., & Beal, M. F. (1998). Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. Journal of Neurochemistry, 71(6), 2642–2644.
Boissier, J. R., & Simon, P. (1965). Action of caffeine on the spontaneous motility of the mouse. Archives Internationales de Pharmacodynamie et de Therapie, 158(1), 212–221.
Brouillet, E., Guyot, M. C., Mittoux, V., Altairac, S., Conde, F., Palfi, S., et al. (1998). Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. Journal of Neurochemistry, 70(2), 794–805.
Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41(5), 646–653.
Browne, S. E., Ferrante, R. J., & Beal, M. F. (1999). Oxidative stress in Huntington’s disease. Brain Pathology, 9(1), 147–163.
Chan, D. C. (2006). Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 125(7), 1241–1252.
Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21(4B), 2895–2900.
Cirillo, G., Maggio, N., Bianco, M. R., Vollono, C., Sellitti, S., & Papa, M. (2010). Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats. Neurochemistry International, 56(1), 152–160.
Dhillon, N., Aggarwal, B. B., Newman, R. A., Wolff, R. A., Kunnumakkara, A. B., Abbruzzese, J. L., et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clinical Cancer Research, 14(14), 4491–4499.
Duran-Vilaregut, J., Manich, G., Del Valle, J., Camins, A., Pallas, M., Vilaplana, J., et al. (2012). Expression pattern of ataxia telangiectasia mutated (ATM), p53, Akt, and glycogen synthase kinase-3beta in the striatum of rats treated with 3-nitropropionic acid. Journal of Neuroscience Research, 90(9), 1803–1813.
Fang, M., Jin, Y., Bao, W., Gao, H., Xu, M., Wang, D., et al. (2012). In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. International Journal of Nanomedicine, 7, 5395–5404.
Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.
Forsmark-Andree, P., Lee, C. P., Dallner, G., & Ernster, L. (1997). Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radical Biology and Medicine, 22(3), 391–400.
Frautschy, S. A., & Cole, G. M. (2009). Bioavailable curcuminoid formulations for treating Alzheimer’s disease and other age-realted disorders. United States. US 2009/0324703 A1.
Gould, T. J., Bowenkamp, K. E., Larson, G., Zahniser, N. R., & Bickford, P. C. (1995). Effects of dietary restriction on motor learning and cerebellar noradrenergic dysfunction in aged F344 rats. Brain Research, 684(2), 150–158.
Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305(5684), 626–629.
Griffiths, D. E., & Houghton, R. L. (1974). Studies on energy-linked reactions: Modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. European Journal of Biochemistry, 46(1), 157–167.
Guerrieri, F., Capozza, G., Fratello, A., Zanotti, F., & Papa, S. (1993). Functional and molecular changes in FoF1 ATP-synthase of cardiac muscle during aging. Cardioscience, 4(2), 93–98.
Guyot, M. C., Hantraye, P., Dolan, R., Palfi, S., Maziere, M., & Brouillet, E. (1997). Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neuroscience, 79(1), 45–56.
Hamilton, B. F., & Gould, D. H. (1987). Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: A type of hypoxic (energy deficient) brain damage. Acta Neuropathologica, 72(3), 286–297.
Hayes, J. D., & McMahon, M. (2001). Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Letters, 174(2), 103–113.
Henderson, J. M., Schleimer, S. B., Allbutt, H., Dabholkar, V., Abela, D., Jovic, J., et al. (2005). Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behavioural Brain Research, 162(2), 222–232.
Hickey, M. A., Zhu, C., Medvedeva, V., Lerner, R. P., Patassini, S., Franich, N. R., et al. (2012). Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Molecular Neurodegener, 7, 12.
Hissin, P. J., & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry, 74(1), 214–226.
Kakkar, V., & Kaur, I. P. (2011). Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food and Chemical Toxicology, 49(11), 2906–2913.
Kakkar, V., Muppu, S. K., Chopra, K., & Kaur, I. P. (2013). Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. European Journal of Pharmaceutics and Biopharmaceutics, 6411(13), 00059-3.
Kakkar, V., Singh, S., Singla, D., & Kaur, I. P. (2011). Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Molecular Nutrition & Food Research, 55(3), 495–503.
King, T. E., & Howard, R. L. (1967). Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. Methods in enzymology (pp. 275–276). New York: Academic Press.
King, T. E., Ohnishi, T., Winter, D. B., & Wu, J. T. (1976). Biochemical and EPR probes for structure-function studies of iron sulfur centers of succinate dehydrogenase. Advances in Experimental Medicine and Biology, 74, 182–227.
Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186(1), 189–195.
Kremer, B. (2002). Clinical neurology of Huntington’s disease. OXFORD MONOGRAPHS ON MEDICAL GENETICS.
Kumar, P., & Kumar, A. (2009). Neuroprotective effect of cyclosporine and FK506 against 3-nitropropionic acid induced cognitive dysfunction and glutathione redox in rat: Possible role of nitric oxide. Neuroscience Research, 63(4), 302–314.
Kumar, P., Padi, S. S., Naidu, P. S., & Kumar, A. (2007). Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods and Findings in Experimental and Clinical Pharmacology, 29(1), 19–25.
Kundu, P., Mohanty, C., & Sahoo, S. K. (2012). Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomaterialia, 8(7), 2670–2687.
La Fontaine, M. A., Geddes, J. W., Banks, A., & Butterfield, D. A. (2000). 3-Nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: Insights into Huntington’s disease. Brain Research, 858(2), 356–362.
Lee, W. T., & Chang, C. (2004). Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: An animal model of Huntington’s disease. Progress in Neurobiology, 72(2), 87–110.
Leventhal, L., Sortwell, C. E., Hanbury, R., Collier, T. J., Kordower, J. H., & Palfi, S. (2000). Cyclosporin A protects striatal neurons in vitro and in vivo from 3-nitropropionic acid toxicity. Journal of Comparative Neurology, 425(4), 471–478.
Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., et al. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478.
Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.
Liu, Y., Peterson, D. A., Kimura, H., & Schubert, D. (1997). Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, 69(2), 581–593.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Miao, W., Hu, L., Scrivens, P. J., & Batist, G. (2005). Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway. Journal of Biological Chemistry, 280(21), 20340–20348.
Mohammadi-Bardbori, A., Bengtsson, J., Rannug, U., Rannug, A., & Wincent, E. (2012). Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chemical Research in Toxicology, 25(9), 1878–1884.
Montoya, A., Price, B. H., Menear, M., & Lepage, M. (2006). Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry and Neuroscience, 31(1), 21–29.
Nasr, P., Carbery, T., & Geddes, J. W. (2009). N-methyl-D-aspartate receptor antagonists have variable affect in 3-nitropropionic acid toxicity. Neurochemical Research, 34(3), 490–498.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.
Petersen, A., Castilho, R. F., Hansson, O., Wieloch, T., & Brundin, P. (2000). Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons. Brain Research, 857(1–2), 20–29.
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.
Puka-Sundvall, M., Wallin, C., Gilland, E., Hallin, U., Wang, X., Sandberg, M., et al. (2000). Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Research. Developmental Brain Research, 125(1–2), 43–50.
Ray, B., Bisht, S., Maitra, A., & Lahiri, D. K. (2011). Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc) in the neuronal cell culture and animal model: Implications for Alzheimer’s disease. Journal of Alzheimer’s Disease, 23(1), 61–77.
Sandhir, R., & Mehrotra, A. (2013). Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochimica et Biophysica Acta, 1832(3), 421–430.
Sandhir, R., Mehrotra, A., & Kamboj, S. S. (2010). Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochemistry International, 57(5), 579–587.
Sandhir, R., Sood, A., Mehrotra, A., & Kamboj, S. S. (2012). N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegenerative Diseases, 9(3), 145–157.
Saulle, E., Gubellini, P., Picconi, B., Centonze, D., Tropepi, D., Pisani, A., et al. (2004). Neuronal vulnerability following inhibition of mitochondrial complex II: A possible ionic mechanism for Huntington’s disease. Molecular and Cellular Neuroscience, 25(1), 9–20.
Sharma, S., Zhuang, Y., Ying, Z., Wu, A., & Gomez-Pinilla, F. (2009). Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience, 161(4), 1037–1044.
Sottocasa, G. L., Kuylenstierna, B., Ernster, L., & Bergstrand, A. (1967). An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. Journal of Cell Biology, 32(2), 415–438.
Sun, M., Su, X., Ding, B., He, X., Liu, X., Yu, A., et al. (2012). Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond), 7(7), 1085–1100.
Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., & Schapira, A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Annals of Neurology, 45(1), 25–32.
Tabrizi, S. J., Workman, J., Hart, P. E., Mangiarini, L., Mahal, A., Bates, G., et al. (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Annals of Neurology, 47(1), 80–86.
Tedeschi, H., & Harris, D. L. (1958). Some observations on the photometric estimation of mitochondrial volume. Biochimica et Biophysica Acta, 28(2), 392–402.
Towbin, H., Staehelin, T., & Gordon, J. (1992). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Biotechnology, 24, 145–149.
Tunez, I., Montilla, P., Del Carmen Munoz, M., Feijoo, M., & Salcedo, M. (2004). Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. Journal of Pineal Research, 37(4), 252–256.
Wang, H., & Joseph, J. A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology and Medicine, 27(5–6), 612–616.
Williams, J. N., Jr. (1964). A method for the simultaneous quantitative estimation of cytochromes a, B, C1, and C in mitochondria. Archives of Biochemistry and Biophysics, 107, 537–543.
Wu, J., Li, Q., Wang, X., Yu, S., Li, L., Wu, X., et al. (2013). Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS ONE, 8(3), e59843. doi:10.1371/journal.pone.0059843.
Yang, K. Y., Lin, L. C., Tseng, T. Y., Wang, S. C., & Tsai, T. H. (2007). Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 853(1–2), 183–189.