Isogeometric collocation: Neumann boundary conditions and contact

L. De Lorenzis1, J.A. Evans2, T.J.R. Hughes3, A. Reali4
1Institut für Angewandte Mechanik, Technische Universität Braunschweig, Bienroder Weg 87, 38106 Braunschweig, Germany
2Aerospace Engineering Sciences, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO 80309-0429, USA
3Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 East 24th Street, Austin, TX 78712, USA
4Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy

Tài liệu tham khảo

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Cottrell, 2009 Evans, 2009, n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726, 10.1016/j.cma.2009.01.021 Groß mann, 2012, Isogeometric simulation of turbine blades for aircraft engines, Comput. Aided Geom. Design, 29, 519, 10.1016/j.cagd.2012.03.002 Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004 Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014 Auricchio, 2010, Isogeometric collocation methods, Mathematical Models and Methods in Applied Sciences, 20, 10.1142/S0218202510004878 Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026 Bischoff, 2004, Models and Finite Elements for Thin-walled Structures, 59 Schillinger, 2013, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017 Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020 Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009 Oñate, 1996, A finite point method in computational mechanics. Application to convective transport and fluid flow, Internat. J. Numer. Methods Engrg, 39, 3839, 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R Aluru, 2000, A point collocation method based on reproducing kernel approximation, Internat. J. Numer. Methods Engrg, 47, 1083, 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N Zhang, 2001, Least-squares collocation meshless method, Internat. J. Numer. Methods Engrg, 51, 1089, 10.1002/nme.200 Kim, 2003, Point collocation methods using the fast moving least-square reproducing kernel approximation, Internat. J. Numer. Methods Engrg, 56, 1445, 10.1002/nme.618 Hu, 2007, Weighted radial basis collocation method for boundary value problems, Internat. J. Numer. Methods Engrg, 69, 2736, 10.1002/nme.1877 Nguyen, 2008, Meshless methods: A review and computer implementation aspects, Math. Comput. Simul., 79, 763, 10.1016/j.matcom.2008.01.003 Hu, 2011, Error analysis of collocation method based on reproducing kernel approximation, Numer. Methods Partial Differential Equations, 27, 554, 10.1002/num.20539 Chi, 2013, A gradient reproducing kernel collocation method for boundary value problems, Internat. J. Numer. Methods Engrg, 93, 1381, 10.1002/nme.4432 Piegl, 1996 Grisvard, 2011 Grisvard, 1986, Problemes aux limites dans les polygones. Mode d’emploi, Bull. Dir, Etud. Rech., Ser C Laursen, 2002 Wriggers, 2006 Sauer, 2013, A computational contact formulation based on surface potentials, Comput. Methods Appl. Mech. Engrg., 253, 369, 10.1016/j.cma.2012.09.002 Zavarise, 2009, A modified node-to-segment algorithm passing the contact patch test, Internat. J. Numer. Methods Engrg, 79, 379, 10.1002/nme.2559 Fischer, 2005, Frictionless 2D contact formulations for finite deformations based on the mortar method, Comput. Mech., 36, 226, 10.1007/s00466-005-0660-y Temizer, 2011, Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 1100, 10.1016/j.cma.2010.11.020 De Lorenzis, 2011, A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg, 87, 1278, 10.1002/nme.3159 Dimitri, 2014, Isogeometric large deformation frictionless contact using T-splines, Comput. Methods Appl. Mech. Engrg., 269, 394, 10.1016/j.cma.2013.11.002 Puso, 2004, A mortar segment-to-segment frictional contact method for large deformations, Comput. Methods Appl. Mech. Engrg., 193, 4891, 10.1016/j.cma.2004.06.001 Temizer, 2012, Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209–212, 115, 10.1016/j.cma.2011.10.014 De Lorenzis, 2012, A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 10.1007/s00466-011-0623-4 Papadopoulos, 1995, A novel finite element formulation for frictionless contact problems, Internat. J. Numer. Methods Engrg, 38, 2603, 10.1002/nme.1620381507 Taylor, 1991, On a patch test for contact problems in two dimensions, 690 Matzen, 2013, A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput. Methods Appl. Mech. Engrg., 255, 27, 10.1016/j.cma.2012.11.011